Изготовление газобетона: Изготовление газобетона: обзор процесса производства

Содержание

Технология изготовления автоклавного газобетона | gazobeton.org

Газобетон – это легкий искусственный материал, полученный в результате твердения поризованной смеси, состоящей из гидравлических вяжущих веществ, тонкомолотого кремнеземистого компонента, воды и добавки газообразователя.

 

Для изготовления изделий из ячеистого бетона можно применять различные сырьевые материалы, но наибольшее распространение получили следующие:

 

— портландцемент ПЦ 400 – ПЦ 500, без активных минеральных добавок;

— известь негашеная кальциевая с содержанием CaO не менее 70%;

— кварцевый песок с содержанием кварца SiO2 не менее 85%, а глинистых примесей не более 3%;

— газообразователь алюминиевая пудра (паста) с содержанием активного алюминия не менее 80%.

 

 

Технологический процесс изготовления автоклавного газобетона  включает в себя:

— прием и подготовку сырьевых материалов;

— приготовление газобетонной смеси;

— формование массивов газобетона;

— разрезку массивов на изделия;

— автоклавную обработку;

— упаковку изделий.

 

Сырьевые материалы могут поступать на завод различными видами транспорта (чаще всего автомобильным и железнодорожным). Хранение вяжущих предусматривается в специальных силосах. Количество и объем силосов выбирается в зависимости от мощности завода, удаленности от поставщиков материалов и вида транспорта.

 

Кварцевый песок выгружаются в приемный бункер, откуда по ленточному конвейеру поступает на помол для приготовления шлама. Помол производится в шаровых мельницах. Далее песчаный шлам транспортируется в шламбассейны, где гомогенизируется с помощью постоянного механического перемешивания.

 

Негашеная известь на предприятие поступает в тонкомолотом или комовом виде.

 

В первом случае, тонкомолотая негашеная известь хранится, по аналогии с портландцементом, в силосах и уже готова к употреблению. Во втором случае, если поступает комовая негашеная известь, на предприятии используется технология приготовления известково-песчаного вяжущего путем совместного сухого помола в шаровых мельницах извести и кварцевого песка.

 

Приготовление газобетонной смеси производится в дозаторно-смесительном отделении. Портландцемент, известь (известково-песчаное вяжущее), песчаный шлам, шлам из отходов резки, вода и алюминиевая суспензия дозируются в соответствии с установленной рецептурой в специальный смеситель, обеспечивающий высокую гомогенность смеси.

 

Процесс формования включает разгрузку (заливку) смеси из смесителя в форму и вспучивание смеси. Окончание процесса формования наступает после достижения максимальной высоты вспучивания смеси и прекращения активного газовыделения.

 

После вспучивания формы с газобетонной смесью выдерживаются на постах, желательно при температуре воздуха не менее +15-20oС до приобретения требуемой пластической прочности сырца. Для ускорения процесса набора первоначальной прочности формы со смесью могут выдерживаться в специальных термокамерах при температуре до +70-80

oС. Время выдержки при использовании термокамер уменьшается.

 

После достижения сырцом пластической прочности 0,04-0,12 МПа (в зависимости от технологии) формы подаются на резательный комплекс. Газобетонный массив калибруется со всех сторон и разрезается проволочными струнами в продольном и поперечном направлениях на изделия требуемых размеров. Метод резки газобетонных массивов в полупластическом состоянии с помощью тонких проволочных струн хорошо зарекомендовал себя и на современных резательных машинах позволяет получать изделия точных размеров с отклонениями от номинальных до ±1,0-1,5 мм. Такая точность позволяет осуществлять кладку блоков на тонкослойную клеевую смесь вместо традиционного цементно-песчаного раствора.

 

Разрезанные на изделия массивы устанавливаются на автоклавные тележки и загружаются в автоклав. После полной загрузки автоклава начинается тепловлажностная обработка по определенному режиму, включающему плавный набор температуры и давления, изотермическую выдержку при температуре около 190°С и давлении 12 атм, плавный спуск давления и подготовка изделий к выгрузке.

 

 

 

Из компонентов CaO и SiO2, вяжущих материалов и кварцевого песка, а также воды, в условиях автоклавной обработки (высокое давление и температура) происходит образование новых минералов – низкоосновных гидросиликатов кальция, что предопределяет более высокие физико-механические характеристики автоклавного газобетона в сравнении с неавтоклавными ячеистыми бетонами (пенобетон, газобетон).

 

После завершения цикла тепловлажностной обработки изделия подаются на участок деления и упаковки, а затем на склад готовой продукции.

 

Основные моменты технологии производства блоков из автоклавного газобетона показаны на видео одного из участников ассоциации ВААГ:

 

 

 

 

 

Технология производства газобетонных блоков | Полезная информация о газобетоне завода ДСК Грас

В 60-х годах прошлого века, когда развивалось производство автоклавных бетонов, существовали разные способы их изготовления. Одни из них подразумевали использование цементных, другие — известковых, третьи — смешанных вяжущих составов. В те годы был распространён термин «газосиликатный бетон», который применяется и в наши дни — но уже ошибочно: силикатные ячеистые бетоны ушли в прошлое как класс. Промышленность XXI века не выпускает чистых газосиликатов — сегодня распространены более долговечные бетоны на цементном и смешанном вяжущем составе. Поэтому те, кто в наши дни говорят «газосиликат», в большинстве случаев имеют в виду автоклавный ячеистый газобетон.

За последние 15 лет среднегодовой ввод жилья в России вырос в 2,5 раза. Выпуск автоклавного газобетона за этот же период увеличилось в 12 раз. Он стал самым массовым материалом для возведения стен, применяемым в строительстве.

В последние годы растёт популярность газобетонных блоков — в частности, марок низких плотностей, например, D350. Стоит отметить, что сегодня в России ежегодно выпускается более 1,5 млн м3 блоков низких плотностей. Всё чаще звучит вопрос: как производится этот материал? Развёрнутый ответ на него — в этой статье.

Подготовка сырья

Для изготовления блоков из ячеистого бетона используется смесь цемента, гипса, песка, извести и воды. В неё в небольших объёмах добавляется алюминиевая паста. За точное дозирование всех компонентов отвечает автоматизированная установка.

Формование

Из миксера сырьё поступает в формы большого объёма. Здесь смесь находится несколько часов при температуре, составляющей приблизительно 50º С. Идёт реакция, и массив поднимается, напоминая дрожжевое тесто. Возникает огромное количество ячеек (пор), которые и дают стройматериалу его название. После того, как массив приобрёл требуемый объём, нужно еще некоторое время, чтобы он предварительно отвердел. Далее он кантуется на 90º и в вертикальном положении помещается на поддон для автоклава. Здесь массив остаётся в ходе резки, обработки в автоклаве и разделения.

По окончании процесса смесь подаётся на участок резки.

Резка на блоки

На очередной стадии массив, сохраняя вертикальное положение, движется по участку резки. Здесь с применением ножей и струн он режется по заранее заданным размерам.

Интересный факт

Отходы материала, образующиеся при резке, вновь поступают в производство. Технологический процесс выпуска ячеистого бетона, таким образом, становится безотходным.

Обработка в автоклаве

Нарезанные блоки помещаются в автоклав — камеру с температурой 180-190ºС, давлением около 12 бар и насыщенным паром. Здесь будущий стройматериал выдерживается в течение 12 часов. За это время в блоках формируется кристаллическая структура, выгодно отличающая автоклавный газобетон от других материалов и придающая ему достойные практические свойства.

После обработки в автоклаве готовый стройматериал с применением крана-делителя выкладывается для остывания.

Упаковывание

На последнем этапе блоки из ячеистого бетона — например, марки D300 — аккуратно запаковываются в перфорированную термоусадочную пленку с помощью автоматического оборудования.

Упакованные газобетонные блоки транспортируются на склад с помощью вилочных погрузчиков. С этого момента они готовы к реализации.

Отличительные особенности применяемого оборудования

Для производства автоклавного ячеистого газобетона на нашем заводе применяется оборудование марки HESS AAC Systems B.V., отвечающее самым строгим международным стандартам.

Система подачи сыпучих материалов. В ней используется запатентованная технология Lahti Precision, реализованная только в линиях HESS, в основе которой — псевдоожижение (флюидизация) материалов. Система разгружает силоса и дозирует подачу сыпучих материалов в псевдоожиженном состоянии, создаваемом с помощью воздуха. Шнеки и другие механические части не используются, поэтому нет необходимости чистить и заменять детали. Самое важное — то, что система позволяет дозировать сыпучие материалы с точность до 100 грамм. Это даёт возможность максимально точно и гибко адаптировать рецептуру.

Устройство кантования массива. Массив перед резкой кантуется в форме в вертикальное положение, после чего корпус формы удаляется. Массив не подвергается механическому захвату манипулятором, что положительно влияет на качество конечного продукта. Предотвращается появление трещин, исключается деформация массива, сохраняются прочностные и геометрические характеристики блоков.

Устройство вертикальной, предварительной и окончательной боковой резки. Обрезает материал по трём измерениям, позволяет регулировать толщину снимаемого слоя или выравнивать поверхность массива после предварительной резки. Линия оснащена системой, следящей за обрывом струн. Обрезки массива отбрасываются в шлам-канал, промываемый водой. Отсюда они поступают в ёмкость с размалывающим устройством и мешалкой, расположенную под линией резки. Из ёмкости шлам транспортируется в шламбассейн для дальнейшего использования. Такое решение даёт экономию сырья и служит частью концепции «Безотходное производство».

Система разделения массива. В ней реализована уникальная технология разделения «зелёного» массива, позволяющая расслаивать его непосредственно после резки — до автоклавирования. Массив подается в автоклав разделённым на слои. Благодаря этому пропаривание выполняется максимально равномерно и качественно, и газобетон приобретает предельно возможную прочность. В отличие от традиционных технологий, подразумевающих резку вертикально стоящего массива и разделение «белого» продукта, слипания слоёв при пропаривании не происходит. Поэтому не требуется и дополнительного разделения блоков после автоклавирования. Благодаря этому сохраняется привлекательный вид блоков, исключается появление сколов, отверстий и трещин, обеспечивается идеальная геометрия конечного продукта.

Технология производства газобетона — АлтайСтройМаш

На сегодняшний день технология производства газобетонных блоков интересует не только людей, планирующих построить свой дом, но и предпринимателей из России, Казахстана, Узбекистана и других стран СНГ, которые решили заняться бизнесом на производстве газобетона.

Почему именно газобетон? Во-первых, благодаря высоким показателям прочности и теплоизоляции, спрос на этот материал постоянно растет. Во-вторых, технология изготовления газоблоков очень проста: вам не потребуются особые знания и умения, чтобы стать производителем газобетона.

Предлагаем подробнее ознакомиться с технологией производства газоблоков.

Неавтоклавный газобетон: технология и требования

1. Производственное помещение обязательно должно быть светлым и хорошо вентилируемым. Требуемая температура воздуха в здании – не менее 20С.

2. Особое внимание нужно уделить отсутствию сквозняков в месте подъема газобетонной смеси в формах. Наличие сквозняка может повлиять на весь процесс производства (особенно в момент подъема смеси).

Если температура в цехе меньше 20С, то необходимо добиться температуры от 20С как минимум локально (в местах подъема смеси в формах). В линиях конвейерного типа необходимо разместить камеру предварительного прогрева и установить ее от поста заливки до поста резки. Оптимальная температура в камере предварительного прогрева – 35-40С.

С подробным рецептом газобетона можно ознакомиться здесь.

Технология изготовления газобетона: пошаговая инструкция

Шаг 1. Заливаем воду в газобетоносмеситель (температура воды 45-60С).

Шаг 2. Включаем смеситель и засыпаем цемент.

Шаг 3. Добавляем химические компоненты: каустическую соду (NaOH) и сульфат натрия (Na2SO4) и засыпаем песок.

Шаг 4. Перемешиваем все компоненты в течение 3-5 минут.

Шаг 5. Добавляем приготовленную суспензию алюминиевой пудры или  отмеренную массу алюминиевой пасты (в сухом виде) и перемешиваем 20-30 секунд.

Шаг 6. Пока готовится смесь, форму для заливки нужно подкатить к смесителю. К моменту слива смеси формы нужно почистить, собрать и смазать. После получения готовой смеси нужно выключить смеситель и слить раствор.

Шаг 7. После слива раствора аккуратно перемещаем форму в камеру предварительного прогрева.

Шаг 8. После набора необходимой структурной прочности (1-3 часа) выкатываем форму из камеры предварительного прогрева, срезаем горбушку, снимаем борта и разрезаем массив на отдельные блоки.

Шаг 9. Разрезанный массив перемещаем в камеру окончательной выдержки для набора прочности. Температура выдержки – 50-60С.

Шаг 10. После окончательного набора прочности (в течение 6-8 часов) готовые блоки укладываются на поддон, упаковываются стрейч пленкой и отгружаются на склад.

Технология производства газоблоков – это просто!

Как вы уже поняли, технология производства газобетона не сложнее выпечки хлеба или приготовления плова: вам не нужно иметь специальные знания и навыки, чтобы начать производить качественные газобетонные блоки. Кроме того, приобретая оборудование по производству газоблоков, технологи компании «АлтайСтройМаш» всегда будут на связи и смогут ответить на любые ваши вопросы.

Готовы стать производителем газобетонных блоков?

Подобрать оборудование

производство и изготовление газобетонных блоков в Москве

Производственные мощности предприятия Bonolit располагаются на территории небольшого города Старая Купавна, находящегося в 22 км от Москвы. Производство современных строительных материалов из газобетона осуществляется на высокотехнологичном оборудовании компании HESS AAC Systems B.V. Автоклавный газобетон изготавливается по уникальной технологии, не имеющей аналогов у других российских производителей. Все технологические процессы производства автоматизированы и контролируются специалистами с высокой квалификацией.

Технология изготовления

При производстве газобетон проходит автоклавную обработку. Перед тем как поместить «зеленый массив» в автоклавы, блоки обязательно проходят специальное разделение, то есть в автоклав поступают уже разделенные, а не слипшиеся блоки. Такой метод позволяет избежать появления сколов и трещин на готовом газобетоне. Метод «разделения зеленого массива» обеспечивает равномерный процесс пропаривания материала, благодаря чему он получает однородность структуры и высокие механические характеристики. Поверхность изделий Bonolit хорошо контактирует с любыми отделочными материалами. Завершающей стадией при производстве газобетона является его упаковка в специальную пленку Stretch-hood, которая способствует сохранению целостности готовых изделий при хранении и транспортировке и обеспечивает дополнительное удобство при перевозке.

Виды газобетонных блоков

Вы можете выбрать и купить газоблоки для устройства различных конструкций.

Для несущих стен. Газобетон высокой прочности, имеющий плотность 300, 400 и 500 кг/м3, применяется для возведения несущих конструкций. Имея стандартные длину и высоту (600 и 2500 мм соответственно), блоки могут изготавливаться с различной шириной – от 200 до 500 мм. Стены из таких газобетонных блоков имеют хорошую несущую способность, качественную тепло- и звукоизоляцию и высокий коэффициент паропроницаемости.

Для внутренних перегородок. Для возведения перегородок можно использовать газобетон плотностью 500 и 600 кг/м3. Длина и высота изделий составляет 600 и 250 мм соответственно, а ширина находится в диапазоне от 500 до 175 мм. Перегородки из газосиликатных блоков имеют высокие звуко- и теплоизоляционные показатели, отличаются огнестойкостью.

Для арок.Для организации арочных проемов используют газобетонные блоки плотностью 500 и 600 кг/м3. Благодаря легкости обработки блоков из газобетона можно изготавливать арки различного радиуса.

Для перемычек. Усиление оконных и дверных проемов возможно с помощью газосиликатных П-образных блоков производства компании Bonolit с плотностью 500 кг/м3.

Для навесных фасадов. Для устройства вентилируемых фасадов компания Bonolit осуществляет производство газобетона плотностью 600 кг/м3, которые не подвергаются разрушению от воздействия влаги и перепадов температур, а также отличаются повышенной прочностью на вырыв. Размеры таких газосиликатных блоков – 600х250х200–500 мм.

Преимущества газоблоков Bonolit

Точность геометрии. Предельные отклонения в габаритах изделий, изготовленных на резательных линиях HESS, составляют не более +-1 мм.

Экологическая чистота. При изготовлении газобетона используются исключительно натуральные компоненты (гипс, песок, известь, цемент и вода) в соответствии с передовыми стандартами в области экологии. Компания Bonolit осуществляет безотходное производство. Цикл использования газобетона позволяет применять выделяемый пар для остальных рабочих процессов производства газобетона.

Высокий уровень качества. Контроль продукции Bonolit осуществляется на всех этапах ее изготовления – начиная от закупки качественного сырья и заканчивая высококачественной упаковкой. Производитель имеет собственную сертифицированную лабораторию, оснащенную современным оборудованием, для измерения и испытания газобетона Bonolit.

Долгий срок службы. При соблюдении требований к возведению домов из газосиликатных блоков срок их службы превышает 100 лет даже без дополнительной облицовки фасада.

Высокая теплоизоляция. Стены зданий, построенных из газосиликатных блоков от производителя Bonolit, обладают высокими способностями теплосбережения. Газобетон Bonolit 40 (плотностью 400 кг/м3 и шириной 400 мм) позволяет возводить дом в один ряд без дополнительного утепления.

Плотность (кг/м3) 300 400 500 600
Класс прочности B 1,5 В 2,5 В 3,5 В 5
Теплопроводность (Вт/м*С) 0,08 0,096 0,12 0,14
Паропроницаемость (мг/м*ч*Па) 0,26 0,23 0,20 0,16
Морозостойкость F75 F75 F75 F75
Усадка при высыхании (мм/м) 0,24 0,24 0,24 0,225
Огнестойкость REI 240

Видеоролик о производстве газобетона на нашем сайте позволит Вам получить более полное представление о работе предприятия и наших технологиях. Чтобы купить газосиликатные блоки от производителя, можно оформить заказ на сайте либо связаться с нами по телефонам в Москве: +7 (495) 660-06-50, +7 (495) 660-06-51.

Газобетон своими руками в домашних условиях: технология

Газобетон – это универсальный материал, который обладает отменными прочностными характеристиками и является простым в монтаже. Поэтому материал широко применяется в строительстве. Для экономии денежных средств на этом процессе рекомендовано изготовление газобетона своими руками в домашних условиях.

Что такое газобетон и каковы его характеристики

Перед применением газобетона для возведения домов и других построек на участке, рекомендовано предварительно определить его характеристики.

Основные свойства и качества

Соответственно мировым стандартам качества и ГОСТу материал должен обладать перечнем определенных качеств. Качественный материал должен выдерживать 35-100 циклов заморозки и разморозки. Показатель теплопроводности газобетона составляет 0,09-0,38. Плотность материала составляет Д300-Д1200. Средний показатель паропроницаемости – 0,2. Усадка газобетона составляет 0,3 миллиметра на квадратный метр.

Виды материала и изделий из него

Соответственно характеристикам газобетона его разделяют на: теплоизоляционный, конструкционный, конструкционно-теплоизоляционный.

Теплоизоляционный газобетон имеет плотность от 300 до 400. Он имеет низкую теплопроводность и характеризуется незначитекльным весом. Применение материала рекомендуется для теплоизоляции помещений.

Конструкционный газобетон обладает отменными прочностными характеристиками и имеет плотность от 1000 до 1200. Благодаря высокому коэффициенту теплопроводности предоставляется возможность его применения в качестве утеплителя.

Наиболее популярным является конструкционно-теплоизоляционный газобетон. Он характеризуется плотностью 400-900. С его применением возводятся стены и перегородки.

Сильные стороны строений возведенных из газобетона

Материал широко применяется в строительстве благодаря наличию большого количества преимуществ:

  • Для производства материала используется песок, известь, цемент, алюминиевая пудра и вода, что обеспечивает экологичность материала.
  • Газобетон имеет небольшой вес, что упрощает процесс его укладки.
  • Благодаря большим размерам газоблоков ускоряется процесс возведения газобетона.
  • Материал характеризуется высоким уровнем стойкости к возгоранию.
  • Газобетон является стойким к морозам, что позволяет его применять в суровых климатических условиях.
  • Благодаря универсальному составу материала предоставляется возможность его распиловки и шлифовки.
  • Газобетон позволяет использовать разнообразные материалы для отделки зданий внутри и снаружи.
  • Такие показатели, как прочность и теплопроводность, являются оптимальными.
  • Производство материала осуществляется различными компаниями, что позволяет клиенту выбрать наиболее приемлемый вариант для себя.
  • Материал обладает паропроницаемыми свойствами, что позволяет обеспечить оптимальный микроклимат в помещении.
  • Газобетон обладает хорошими звукоизоляционными свойствами, что обеспечивает комфортное пребывание в помещении.

Газобетонный дом имеет высокие эксплуатационные характеристики, что объясняется большим количеством преимуществ материала.

Недостатки изделий и их устранение

Перед тем, как сделать газобетон в домашних условиях, рекомендовано определить его недостатки. Материал является гигроскопичным, что приводит к усиленному водопоглощению. При отрицательных температурах накопленная в блоках влага кристаллизируется, что приводит к их разрушению.

Для того чтобы решить эту проблему нужно стены из газобетонных блоков облицовывать. С этой целью используется кирпич, металлопрофиль, дерево и другие отделочные материалы.

Производство газоблока своими руками

Технология производства газобетона в домашних условиях требует от мастера придерживаться определенных правил. Этот процесс состоит из нескольких этапов.

Необходимый набор оборудования и материалов

Перед тем, как изготавливать газобетон, нужно подготовить материалы и инструменты. Бетон делается из смеси таких материалов:

  • Песок. Рекомендуется отдавать предпочтение кварцевому песку, который предварительно проходит процесс промывки и высушивания.
  • Цемент. Высокопрочный материал получается при использовании цемента, который имеет марку более 400.
  • Чистой воды.
  • Негашеной извести.
  • Алюминиевой пудры, каустической соды, сульфата натрия.

Формы

Перед тем, как делают газобетон, подготавливают формы. В строительных магазинах можно купить готовые изделия. Для экономии денежных средств их создают  самостоятельно. Изначально изготавливают пенал из деревянных досок. В него вставляют перемычки, с помощью которых обеспечивается разделение каркаса на отсеки. Изготовление форм может проводиться из влагонепроницаемой фанеры. Для того чтобы зафиксировать доски, в них предварительно нужно сделать пропилы.

Размеры ячеек должны совпадать с размерами, которые в соответствии с проектом должен иметь готовый блок. Для того чтобы ускорить производственный процесс, рекомендовано провести одновременное сооружение нескольких форм. Для того чтобы исключить возможность прилипания раствора к формам, их нужно предварительно смазать специальным средством. В домашних условиях рекомендовано применение отработанного машинного  масла, которое разводится водой в соотношении 1:3.

Для того чтобы ускорить изготовление газобетона можно использовать мобильные установки, которые состоят из компрессора, смесителя и соединительных рукавов. Предварительно подготавливаются приспособления, с помощью которых удаляются излишки бетона.

Приготовление раствора

Процесс изготовления газобетона в домашних условиях начинается с приготовления раствора. Количество используемых компонентов зависит от того, какой плотности материал пользователь хочет получить. Рассмотри вариант приготовления раствора для газобетона, плотностью 1600 килограмм на метр кубический. Для этого понадобится 1100 килограмм песка и 400 килограмм цемента. Компоненты тщательно перемешиваются. К ним нужно добавить 5 кг извести. Также в раствор добавляются такие добавки, как каустическая сода, алюминиевая пудра и сульфат натрия.

После тщательного перемешивания всех сухих компонентов, они заливаются 189 литрами воды. После перемешивания состава до однородности его можно использовать для заливки.

Заливка

После смазывания форм специальным составом, в них заливается раствор. При этом нужно следить, чтобы формы не заливались до краев, так как при застывании смесь вспучивается и излишки будут вылизать наружу. Формы нужно заливать до половины. После заливки материала наблюдается появление процесса газообразования. На следующем этапе проводится удаление излишков смеси с применением металлических струн. Процедура проводиться по истечению 5-6 часов после заливки.

Спустя 18 часов после заливки можно проводить распалубку изделий. Для того чтобы газобетонные блоки лучше отходили, нужно немного постучать по формам. По истечению месяца газобетон обретет техническую прочность. Затвердевание блоков наблюдается не только в помещениях, но и на открытых площадках.

Сравнение изделий самостоятельного и заводского выпуска

При производстве газобетонных блоков своими руками они затвердевают гидратационно, а на производстве – автоклавно. Эти материалы отличаются между собой по техническим и физическим параметрам. На производстве изготавливаются блоки стационарным и конвейерным способом. При использовании второго варианта снижается необходимость в участии человека к минимуму. В домашнем производстве материала человек принимает постоянное и непосредственное участие.

По сравнению с автоклавным газобетоном домашние блоки являются менее прочными. Также заводской материал имеет лучшие показатели морозостойкости, хрупкости, теплопроводности.

Рентабельность производства

На рентабельность изготовления блоков влияют разнообразные факторы. Она зависит от:

  • Стоимости сырья;
  • Вложений на покупку оборудования;
  • Количества производственных отходов;
  • Желаемого объема;
  • Цели производства.

Специалисты провели расчеты в соответствии с показателями, в соответствии с которыми было установлено, что сделать газобетонные блоки своими руками дороже, чем приобрести готовый материал. Кроме того, этот процесс требует затрат сил и времени.

Газобетонные блоки – это универсальный строительный материал, который широко применяется для возведения зданий. Приобрести его можно на заводах и в строительных магазинах. Также можно провести изготовление блоков своими руками, предварительно рассчитав рентабельность этого процесса.

виды, изготовление в домашних условиях, видео

Газобетон – это искусственный камень, который используют для возведения стен в индивидуальном строительстве. Он подходит для сооружения несущих конструкций, внутренних перегородок и заполнения межкаркасных пространств. Газоблоки не дают большой нагрузки на фундамент, поскольку имеют ячеистую структуру и малый вес. Это экономичный стройматериал, обладающий высокими теплоизоляционными свойствами.

Оглавление:

  1. Особенности и виды стройматериала
  2. Пропорции компонентов
  3. Методика производства своими руками

Состав и способ получения газобетона

Существует несколько типов классификации ячеистого бетона: в зависимости от назначения, формы, технологии производства и состава.

1. По способу обработки различают автоклавный и неавтоклавный газобетон.

2. По назначению газоблоки могут быть теплоизоляционным, конструкционным или конструкционно-теплоизоляционным. Они имеют определенную маркировку, например, газобетон d500 относится к классу конструкционно-теплоизоляционных блоков.

3. По форм-фактору делятся на U-образные, прямые и паз-гребневые.

Газоблоки изготавливают из песка, цемента, извести, воды, гипса и алюминиевой пудры. Также в производстве могут использоваться вторичные и побочные промышленные материалы, такие как шлак и зола. В зависимости от состава газобетона, его классифицируют на:

  • цементный;
  • шлаковый;
  • известковый;
  • зольный;
  • смешанный.

В искусственно синтезированный камень строительная смесь преобразуется лишь при определенных условиях. Для его получения используют технологию автоклавного затвердения. В этом случае состав застывает под влиянием насыщенного пара и высокого давления, меняя свою структуру. В смеси образуется минерал тоберморит, который придает материалу прочность. Таким образом получают автоклавный газобетон.

Бетон, затвердевающий в естественных условиях, называют неавтоклавным. Он имеет ячеистую структуру, но отличается по своим свойствам от газоблоков, изготовленных по специальной технологии. Этот стройматериал больше подвержен усадке при эксплуатации, поэтому его целесообразно применять в случае небольших нагрузок. Чтобы увеличить прочностные характеристики неавтоклавных блоков, в исходный состав добавляют различные армирующие вещества и наполнители. Снизить усадочную деформацию позволяет применение полиамидных пластмасс при армировании.

Производство неавтоклавных блоков не требует дорогостоящего оборудования, поэтому их можно сделать самому.

Газобетон своими руками

Процесс производства состоит из нескольких этапов:

  • подбор и смешивание компонентов;
  • заполнение форм раствором;
  • выдержка состава для набора прочности;
  • извлечение из форм.

В универсальном составе для получения газобетона содержится цемент, песок, известь, алюминиевая пудра. Исходные добавки и их пропорции могут меняться, в зависимости от наличия сырья и требований к готовому стройматериалу. Например, в автоклавном производстве песок иногда заменяют золой или шлаком. А для получения стройматериала с меньшей плотностью можно делать газобетоны на основе смол ТЭС.

При изготовлении газобетона в домашних условиях необходимо правильно рассчитать соотношение расходных материалов и учесть особенности укладки и погрешности замеров. Но существуют и стандартные рецепты смеси для газоблоков, в которых указаны следующие пропорции:

  • Цемент – 50-70 %;
  • Вода – 0,25-0,8 %;
  • Газообразователь – 0,04-0,09 %;
  • Известь – 1-5 %;
  • Песок – 20-40 %.

Данные вещества используются и при автоклавном производстве. Ориентируясь на приведенное в рецептуре соотношение, можно рассчитать приблизительное количество компонентов, которые войдут в состав на 1 м3 газобетона:

  • Портландцемент – 90 кг;
  • Вода – 300 л;
  • Газообразователь – 0,5 кг;
  • Известь – 35 кг;
  • Песок – 375 кг.

Однако идеального состава в домашних условиях можно добиться лишь опытным путем, поскольку многое зависит от качества исходных компонентов. Повлиять на течение химической реакции может как температура воды, так и марка цемента.

Инструкция по самостоятельному изготовлению неавтоклавного газобетона

Для получения газоблока дома не потребуются сложная аппаратура и инструменты. Главное – четко следовать пунктам приведенного ниже пошагового руководства и использовать компоненты в определенном соотношении, а не «на глаз».

1. Исходя из указанных пропорций вычислить необходимое количество ингредиентов.

2. В первую очередь, необходимо смешать портландцемент с предварительно просеянным песком.

3. В полученную смесь влить воду и все тщательно перемешать.

4. Добавить в раствор другие компоненты. Алюминиевая пудра всыпается в последнюю очередь. В приготовлении как неавтоклавного, так и автоклавного газобетона одинаково важен процесс смешивания ингредиентов. Для равномерного распределения воздушных пузырьков лучше использовать бетономешалку.

5. Полученный раствор разливается в специальные формы, которые изготавливаются из металлических листов или деревянных досок. Чтобы застывший газобетон было легче достать, лучше использовать разборные конструкции. Кроме того, форму рекомендуют смазывать машинным маслом, разведенным с водой.

6. Заливать смесь нужно наполовину, поскольку она в процессе химической реакции расширяется практически вдвое. Этот процесс занимает около шести часов, после чего можно выравнивать блоки, срезая выступившую массу.

Формирование в этом случае длится дольше, чем для автоклавного газобетона – требуется не менее 12 часов, чтобы смесь затвердела. Для ускорения процесса застывания состава рекомендуют добавить растворимые соединения натрия (соду) на этапе приготовления раствора. Марочную прочность материал набирает после 28 дней выдержки. Готовый неавтоклавный газоблок, приготовленный своими руками, подходит для малоэтажного строительства, например, для возведения одноэтажного дома или гаража.

Газобетонные блоки своими руками в домашних условиях

Значительно уменьшить финансовые затраты на строительство жилья можно, если сделать газобетон своими руками в домашних условиях. Газобетонные изделия в строительстве применяются очень часто.

Из них легко возвести самые разные постройки с большой экономией раствора.

Что такое газобетон

Газобетонные строительные блоки могут быть разного размера и формы. Но состав их практически всегда одинаков. Газобетонные блоки своими руками можно сделать из:

  • цемента высокого качества;
  • извести;
  • кварцевого песка;
  • гипса;
  • алюминиевой пудры;
  • воды.

Технология производства этого материала довольно проста. Производить газобетон можно во дворе своего дома или непосредственно на строительной площадке. Готовые блоки — это параллелепипеды из пористой бетонной массы, в которой находится множество мелких воздушных пор. Они имеют размеры около 3 мм. Образуются поры за счет добавки в раствор алюминиевой пасты или пудры. Иногда в состав кроме перечисленных компонентов добавляются еще некоторые вещества в очень малых количествах. Они нужны для изменения некоторых параметров стройматериала.

По способу производства газобетон может быть сделан автоклавным и неавтоклавным способом. Первый способ не подходит для домашних условий. Для него необходимо дорогостоящее оборудование. Неавтоклавный способ более простой, он позволяет наладить производство газобетона своими руками дома. При изготовлении применяется реакция воды с алюминиевой пудрой, в результате которой выделяется огромное количество углекислого газа, который образует поры внутри блоков. Масса через некоторое время затвердевает. Происходит это в естественных условиях. Тело блока получает множество пор от 1 до 3 мм в диаметре.

Мини-завод по производству неавтоклавного газобетона

Пористая структура — это главное преимущество газоблока. Поры делают материал легким, наделяют его высокими теплоизоляционными свойствами. Плотность для газобетона держится на уровне 300-1200 кг/м³. Чтобы поры прочно держались в бетоне, он должен быть помещен в прочную форму, которая задает размер будущему блоку. Масса твердеет за 2 часа. После этого блоки можно вынимать из формы и раскладывать на стеллажи для полного завердения. Окончательная прочность формируется только на 28 день естественной просушки блоков.

Изготовление газобетона своими руками

Производство газобетона в домашних условиях требует наличия некоторых инструментов. Необходимо подготовить:

  • болгарку с диском;
  • ножовку по дереву;
  • электрическую дрель;
  • рубанок;
  • ножовку для работы по металлу;
  • острый нож;
  • слесарный молоток;
  • лопату для раствора;
  • миксер для замешивания смеси;
  • линейку;
  • строительный фен;
  • мастерок,
  • стальную струна для обрезки блоков;
  • шпатель;
  • весы;
  • зубило и стамеску;
  • мерное ведро.

С помощью мерного ведра и весов отмеряются необходимые компоненты для раствора. Производство газоблоков осуществляется из следующих компонентов:

  • портландцемент марки М400-М500 — 50-70%;
  • просеянный кварцевый песок — от 20 до 40%;
  • известь в качестве пластификатора — 1-5%;
  • пудра или паста алюминиевая — 0,04-0,09%;
  • вода — 0,25-0,8%.
Разборная металлическая форма
Заливка легкого бетона
Удаление излишков бетонного раствора
Блоки после распалубки

Смесь тщательно перемешивается и раскладывается в формы, которые бывают разные. Это может быть довольно прочный ящик. Высота его равняется высоте блоков. Общий объем — 4-9 газоблоков. Сделаны формы могут быть из дерева или металла. Конструкцию желательно изготовить разборной. Более сложный вариант — короб с ячейками, который может быть выполнен из дерева толщиной 30-40 мм, или из металла 4-6 мм. Внутренние перегородки можно сделать из фанеры. Толщина ее должна быть 12-15 мм. Перед заливкой раствора поверхности изнутри нужно смазать техническим маслом и прогреть всю конструкцию феном до 40˚. Смесь заливается до уровня половины высоты короба. Остальное пространство заполнится при расширении состава и образовании пор.

Реакция выделения газа длится 6-8 минут. Раствор сначала поднимается, затем слегка садится. После усадки можно верхнюю часть срезать заготовленной струной, блоки вынуть из формы. Охлаждение блоков должно происходить в естественных условиях. Применение вентиляторов не рекомендуется. Установка формы рекомендуется на ровной горизонтальной поверхности. Лучше подготовить сразу несколько коробов, чтобы замешивать значительное количество раствора. Рабочая площадка должна быть укрыта от ветра и осадков. Размеры блоков можно выбрать по собственному усмотрению.

Заключение по теме

Как сделать газоблоки в домашних условиях? Возможен ли такой вариант? Из чего их делать? Ведь нужна особая аппаратура и оборудование для изготовления газобетона в домашних условиях. Построить стены домов можно с гораздо меньшими затратами, если сделать газоблоки самостоятельно. Специального оборудования требуют лишь строительные материалы автоклавного способа изготовления. Таким способом делают материалы из бетона на производстве. Дома можно готовить блоки только неавтоклавным способом. Для этого нужен качественный портландцемент, песок с минимальными примесями глины, известь, вода, алюминиевая пудра и некоторые другие вещества для изменения характеристик готового изделия.

Смесь хорошо перемешивается и заливается в формы, которые тоже можно изготавливать своими руками. Через 2 часа верхушки блоков срезаются металлической струной, сами блоки вынимаются и раскладываются для сушки. Окончательная сушка длится 4 недели. К этому времени блоки приобретают настоящую прочность. Для производства газобетона на 1 м³ блоков требуется 90 кг цемента, 300 л воды, 0,5 кг алюминиевой пудры, 35 кг извести и 375 кг песка. Это приблизительный состав.

Газобетонные блоки — материал для строительства стен. Он обладает высоким качеством и прочностью. Широко применяется в малоэтажном строительстве. Для возведения собственного дома вполне возможно сделать блоки своими руками.

Автоклавный газобетон

Автоклавный газобетон (AAC) состоит из мелких заполнителей, цемента и расширителя, который заставляет свежую смесь подниматься, как хлебное тесто. Фактически, этот вид бетона на 80 процентов содержит воздух. На заводе, где он изготавливается, материал формуют и разрезают на детали с точными размерами.

Затвердевшие блоки или панели из автоклавного газобетона соединяются тонким слоем раствора. Компоненты можно использовать для стен, полов и крыш. Легкий материал обеспечивает отличную звуко- и теплоизоляцию и, как и все материалы на основе цемента, является прочным и огнестойким.Чтобы быть долговечным, AAC требует определенного вида отделки, например, модифицированной полимером штукатурки, природного или искусственного камня или сайдинга.

Ключевые аспекты AAC, будь то проектирование или строительство с его помощью, описаны ниже:

Преимущества

  • Автоклавный газобетон сочетает в себе изоляционные и структурные возможности в одном материале для стен, полов и крыш. Его легкий вес / ячеистые свойства позволяют легко резать, брить и придавать форму, легко принимать гвозди и винты, а также позволяют направлять его для создания пазов для электрических каналов и трубопроводов меньшего диаметра.Это дает ему гибкость при проектировании и изготовлении, а также дает возможность легко регулировать в полевых условиях.
  • Прочность и стабильность размеров. Материал на основе цемента, AAC устойчив к воде, гниению, плесени, плесени и насекомым. Установки имеют точную форму и соответствуют жестким допускам.
  • Огнестойкость отличная, AAC толщиной восемь дюймов достигает четырехчасового рейтинга (фактическая производительность превышает это значение и соответствует требованиям испытаний до восьми часов).А поскольку он негорючий, он не горит и не выделяет токсичных паров.
  • Малый вес означает, что значения R для AAC сопоставимы с обычными каркасными стенами, но они имеют более высокую тепловую массу, обеспечивают герметичность и, как только что было отмечено, не горючие. Этот легкий вес также обеспечивает значительное снижение уровня шума для уединения как от внешнего шума, так и от других помещений при использовании в качестве внутренних перегородок.

Но у материала есть некоторые ограничения.Он не так широко доступен, как большинство изделий из бетона, хотя его можно доставить куда угодно. Если он должен быть отправлен, его легкий вес является преимуществом. Поскольку его прочность ниже, чем у большинства бетонных изделий или систем, в несущих приложениях его обычно необходимо армировать. Он также требует защитной отделки, поскольку материал пористый и будет разрушаться, если оставить его незащищенным.

Размеры

Доступны как блоки, так и панели. Блоки укладываются так же, как и обычная кладка, но с тонким слоем раствора, а панели устанавливаются вертикально на всю высоту этажа.Для структурных нужд внутри стеновой секции размещаются залитые, армированные ячейки и балки. (Вогнутые углубления вдоль вертикальных краев могут создать цилиндрическую сердцевину между двумя соседними панелями.) Для обычных применений вертикальная ячейка размещается по углам, по обе стороны от отверстий и на расстоянии от 6 до 8 футов вдоль стены. AAC в среднем составляет около 37 фунтов на кубический фут (pcf), поэтому блоки можно размещать вручную, но панели из-за их размера обычно требуют небольшого крана или другого оборудования.

Панели простираются от пола до верха стены:

  • Высота: до 20 футов
  • Ширина: 24 дюйма
  • Толщина: 6, 8, 10 или 12 дюймов (внутренняя толщина 4 дюйма

Блоки больше и легче традиционной бетонной кладки:

  • Высота: обычно 8 дюймов
  • Ширина: 24 дюйма в длину
  • Толщина: 4, 6, 8, 10 и 12 дюймов
  • Стандартный размер 8 на Блок размером 8 на 24 дюйма весит около 33 фунтов;

Специальные формы:

  • U-образная соединительная балка или блоки перемычек доступны толщиной 8, 10 и 12 дюймов.
  • Блоки для язычков и пазов доступны от некоторых производителей, и они соединяются с соседними блоками без раствора по вертикальным краям.
  • Порошковые блоки для создания вертикальных ячеек с армированным раствором.

Установка, соединения и отделка

Благодаря схожести с традиционной бетонной кладкой, блоки (блоки) из автоклавного газобетона могут быть легко установлены каменщиками. Иногда к монтажу подключаются плотники. Панели тяжелее из-за своего размера и требуют использования крана для установки.Производители предлагают обучающие семинары, и обычно для небольших проектов достаточно иметь одного или двух опытных установщиков. В зависимости от выбранного типа отделки они могут быть приклеены непосредственно или механически к поверхности AAC.

Блок

  • Уложен и выровнен первый слой. Блоки укладываются вместе с тонким слоем строительного раствора непрерывным соединением с перекрытием не менее 6 дюймов.
  • Стены выровнены, выровнены и выровнены резиновым молотком.
  • Отверстия и нестандартные углы вырезаются ножовкой или ленточной пилой.
  • Определены места армирования, размещена арматура и выполняется заливка раствора. Затирку необходимо подвергнуть механической вибрации для ее уплотнения.
  • Связующие балки размещаются в верхней части стены и могут использоваться для крепления тяжелых приспособлений.

Панели

  • Панели размещаются по одной, начиная с угла. Панели укладываются в слой тонкослойного раствора, а вертикальная арматура прикрепляется к дюбелям, выступающим от пола, до того, как будет размещена соседняя панель.
  • Сплошная соединительная балка создается наверху либо из фанеры и материала AAC, либо с помощью соединительной балки.
  • Отверстия можно вырезать предварительно или в полевых условиях.

Соединения

  • Каркас / каркас крыши соединяется с обычной верхней пластиной или ураганными ремнями, встроенными в соединительную балку.
  • Каркас пола прикреплен с помощью стандартных ригелей, закрепленных на стороне узла AAC, рядом с соединительной балкой.
  • Напольные системы AAC опираются непосредственно на стены AAC.
  • Стальные конструкционные элементы большего размера устанавливаются на приварные пластины или пластины с болтами, вставленные в соединительную балку.

Отделка

  • Отделка типа Stucco изготавливается специально для AAC. Эти модифицированные полимером штукатурки герметизируют от проникновения воды, но при этом пропускают пары влаги для воздухопроницаемости.
  • Обычные сайдинговые материалы крепятся к поверхности стены механически. Если желательна обратная вентиляция сайдингового материала, следует использовать опушку.
  • Кладочный шпон может быть приклеен непосредственно к поверхности стены или может быть построен как полость. Виниры для прямого наложения обычно представляют собой легкие материалы, такие как искусственный камень.

Соображения по вопросам устойчивого развития и энергетики

Автоклавный газобетон с точки зрения устойчивого развития предлагает как материалы, так и характеристики. Что касается материала, он может содержать переработанные материалы, такие как летучая зола и арматура, которые могут способствовать получению баллов в системе LEED® или других экологических рейтинговых системах.Кроме того, он содержит такое большое количество воздуха, что содержит меньше сырья на единицу объема, чем многие другие строительные продукты. С точки зрения производительности система ведет к ограничению ограждающих конструкций здания. Это создает энергоэффективную оболочку и защищает от нежелательных потерь воздуха. Физические испытания демонстрируют экономию на нагреве и охлаждении примерно от 10 до 20 процентов по сравнению с традиционной конструкцией рамы. В постоянно холодном климате экономия может быть несколько меньше, потому что этот материал имеет меньшую тепловую массу, чем другие типы бетона.В зависимости от местоположения производства по отношению к объекту проекта, AAC может также вносить вклад в местные кредиты на материалы в некоторых системах рейтинга экологичного строительства.

Производственные и физические свойства

Сначала в суспензию смешивают несколько ингредиентов: цемент, известь, воду, мелкоизмельченный песок и часто летучую золу. Добавляется расширительный агент, такой как алюминиевый порошок, и жидкая смесь отливается в большую заготовку. Когда суспензия реагирует с расширителем с образованием пузырьков воздуха, смесь расширяется.После первоначального застывания полученный «пирог» разрезается проволокой на блоки или панели точного размера, а затем запекается (автоклавируется). Тепло способствует более быстрому отверждению материала, благодаря чему блоки и панели сохраняют свои размеры. Армирование помещается в панели перед отверждением.

В ходе этого производственного процесса производится легкий негорючий материал со следующими свойствами:

Плотность: от 20 до 50 фунтов на кубический фут (pcf) — он достаточно легкий, чтобы плавать в воде

Прочность на сжатие: 300 до 900 фунтов на квадратный дюйм (psi)

Допустимое напряжение сдвига: от 8 до 22 psi

Термическое сопротивление: 0.От 8 до 1,25 на дюйм. толщиной

Класс звукопередачи (STC): 40 для толщины 4 дюйма; 45 для толщины 8 дюймов

Автоклавный газобетон

В настоящее время нет торговой ассоциации, представляющей отрасль автоклавного газобетона. Производство AAC все еще существует в Северной Америке. Мы предлагаем вам поискать в Интернете представителей дилеров, которые могут помочь вам с потенциальной доступностью продукта в вашем регионе.

AAC Projects

История трех городов: универсальность AAC

для жилых помещений. Использование газобетона в автоклаве (AAC) дает множество преимуществ.Возможно, в подтверждение универсальности AAC, три описанных здесь жилых проекта совершенно разные, но имеют общую тему безопасности. Большой дом на одну семью в лесу, строительство которого ведет сам хозяин; скромный дом на одну семью на лесистой местности, спроектированный архитектором, стремящимся к экологически безопасному и здоровому образу жизни; и крупная застройка вдоль побережья залива Луизиана, требующая превосходной погодоустойчивости.

Handal Home, Мэриленд: простота и безопасность

Эта большая резиденция (6800 квадратных футов), расположенная в лесу на юге Мэриленда, столкнулась с рядом строительных проблем.Таким образом, владелец, который сам управляет строительством, хотел простую систему. Оказалось, что это 12-дюймовые блоки AAC. Ему нужны были их теплоизоляционные и негорючие свойства, чтобы противостоять лесным условиям дома, которые включали низкие температуры и, возможно, опасность пожара. По его словам, простота AAC позволяет ему за один шаг построить конструктивную стену, которая будет изолирована, устойчива к термитам и готова к отделке. Он не хотел прикреплять сайдинг, предпочитая вместо этого прямую отделку: гипсовую штукатурку для интерьера и лепнину для экстерьера.

Дом Додсона: здоровый и безмятежный

Несколько лет назад, когда архитектор Элис Додсон выбрала компанию AAC для строительства собственного дома, это было отчасти из соображений здоровья и окружающей среды. Давний сторонник устойчивого развития, она также уже следила за Bau-biologie. Относительно неизвестный в Соединенных Штатах, но хорошо известный в Европе среди архитекторов и медицинских работников, Bau-biologie занимается биологией строительства или строительством для жизни. Это произошло после того, как быстрое строительство в послевоенной Германии привело к тому, что мы теперь называем синдромом больного здания.Тогда, как и сейчас, она искала здоровые строительные решения. С этой целью она выбрала блоки и панели из AAC, чтобы получить воздухопроницаемые стены из каменной кладки, которые не выделяют летучие органические соединения (ЛОС). Это создает экологически чистое здание со спокойным и тихим интерьером. А поскольку в процессе строительства участвовал ее муж-пожарный, негорючие материалы были необходимы.

Оболочка из AAC также обеспечивает хорошую теплоемкость и изоляцию. Благодаря энергоэффективной оболочке, дополненной солнечными батареями и дровяной печью, счета за газ в течение первого года составляли всего 100 долларов для дома площадью 4000 квадратных футов.В доме может оставаться тепло в течение двух-трех дней даже после отключения электроэнергии. Додсону нравится, как из материала можно вылепить с помощью деревообрабатывающих инструментов различные формы и элементы, такие как колонны и камины, и он продолжает поддерживать AAC с клиентами, которые ценят его универсальность и эстетический потенциал.

Роща на пляже Инлет: безопасность и устойчивость к погодным условиям

Эта история успеха произошла в результате разрушений, вызванных ураганом Катрина. The Grove at Inlet Beach — это первый жилой комплекс с высокой плотностью застройки, построенный во Флориде Panhandle. Он призван противостоять погодным условиям и проблемам безопасности в окружающей среде побережья Мексиканского залива.Все стены, полы и потолки в этих домах для одной семьи сделаны из панелей и блоков AAC. Превосходная огнестойкость (четыре часа на четыре дюйма) была ключом к утверждению местного зонирования, и в результате не возникло проблем с возгоранием конструкции. Когда прибывают ураганы, эти конструкции готовы противостоять ветру со скоростью 150 миль в час (миль в час) (Категория 4) и с надлежащим усилением могут быть спроектированы так, чтобы противостоять ветру со скоростью 200 миль в час или более (Категория 5). Дома AAC также не разрушаются наводнениями: они противостоят поднимающимся уровням воды, гниению, плесени и плесени, их можно чистить, перекрашивать и снова открывать для жителей — в восстановлении не требуется.

Как будто безопасность и устойчивость к погодным условиям не были достаточной причиной для выбора AAC для своего дома, застройщик рассчитывает сэкономить 35 процентов на счетах за коммунальные услуги и 65 процентов на страховых взносах.

Комфорт бетона

Некоторые гости в отеле Джорджии сегодня спят лучше благодаря автоклавному газобетону (AAC). Примерно в часе езды от Атланты, на территории Форсайта, штат Джорджия, «Комфорт Сьютс», небольшого участка, примыкающего к межштатной автомагистрали, возникло несколько проблем.А высокая стоимость земли делает все более распространенным строить на участках, которым присущи такие проблемы, как шум, неровная местность или минимальные препятствия. Таким образом, разработчики обратились к бетонной системе, чтобы удовлетворить свои потребности в реализации качественного проекта — в данном случае — в прочном, тихом четырехэтажном здании рядом с оживленным шоссе.

Подробнее о AAC.

Заявление об ограничении ответственности

Список организаций и информационных ресурсов не является ни одобрением, ни рекомендацией Portland Cement Association (PCA).PCA не несет никакой ответственности за выбор перечисленных организаций и продуктов, которые они представляют. PCA также не несет ответственности за ошибки и упущения в этом списке.

Ячеистый бетон — обзор

10.3 Материалы и обработка

Панель FRP / AAC, обсуждаемая в этой главе, состоит из ламинатов CFRP в качестве лицевой панели (оболочки) и AAC в качестве основы. Композиты, армированные волокном, обладают высокой устойчивостью к коррозии и изгибу. Соответственно, поскольку AAC является сверхлегким материалом по своей природе, а углепластик является жестким с высокой удельной прочностью, их можно использовать вместе для образования прочных гибридных структурных панелей.В Университете Алабамы в Бирмингеме (UAB) было проведено несколько исследований для изучения поведения структурных панелей CFRP / AAC при осевой и внеплоскостной нагрузке. Khotpal (2004) исследовал прочность на сжатие простого AAC, обернутого углепластиком. Цели состояли в том, чтобы оценить несущую способность ограниченного куба AAC и наблюдать режим разрушения панелей CFRP / AAC. Результаты показали, что обертки из углепластика значительно увеличили прочность на сжатие панелей из углепластика / AAC примерно на 80% по сравнению с обычными панелями из AAC.Уддин и Фуад (2007) исследовали поведение панелей CFRP / AAC, используя образцы небольшого размера при испытании на четырехточечную нагрузку. Экспериментальные результаты этого исследования показали значительное влияние FRP на прочность на изгиб и жесткость гибридных панелей. Муса (2007) также использовал моделирование методом конечных элементов для анализа и проектирования структурных панелей из углепластика / AAC, которые будут использоваться в качестве напольных и стеновых панелей. Муса и Уддин (2009) разработали теоретические формулы для прогнозирования прочности на сдвиг и изгиб панелей CFRP / AAC, и полученные результаты хорошо согласуются с экспериментальными.Кроме того, Mousa (2007) провел сравнительное исследование гибридной панели CFRP / AAC и используемых в настоящее время усиленных панелей AAC. Сравнительное исследование показало, насколько предлагаемые панели экономичны по сравнению с усиленными панелями AAC, которые в настоящее время используются на рынке жилья. Из-за более высокой прочности, получаемой в результате этой комбинации, прочность не является критерием, определяющим конструкцию панели, но прогиб является тем критерием, который определяет конструкцию предлагаемых гибридных панелей (Mousa, 2007).

Как упоминалось ранее, панель CFRP / AAC изготавливается из ламинатов CFRP в виде лицевых листов, прикрепленных к сердцевине из AAC с использованием термореактивных эпоксидных полимеров, образующих жесткую панель. В целом, автоклавный газобетон (AAC) — это сверхлегкий бетон с отчетливой ячеистой структурой. Он составляет примерно одну пятую веса обычного бетона с насыпной плотностью в сухом состоянии в диапазоне от 400-800 кг / м 3 (25-50 фунтов на фут) и прочностью на сжатие в диапазоне от 2 до 7 МПа (300-1000 фунтов на квадратный дюйм) ( Ши и Фуад, 2005).Низкая плотность и пористая структура придают AAC отличные тепло- и звукоизоляционные свойства, что делает его отличным выбором для использования в качестве основного материала в строительстве. Благодаря ячеистой структуре и уменьшенному весу этот материал обладает высокой огнестойкостью и очень прочным по сравнению с обычным строительным материалом, а также обладает уникальными теплоизоляционными свойствами.

AAC в настоящее время используется в виде армированных сталью панелей с использованием предварительно обработанной арматуры в качестве внутреннего армирования.Эта арматура будет подвергаться коррозии в течение длительного времени, а также является дорогостоящей по сравнению с арматурой, используемой для обычного железобетона. Кроме того, эта арматура не играет никакой роли в прочности панелей на сдвиг. Следовательно, панели должны быть толстыми, чтобы преодолеть проблемы сдвига и более низкой прочности на изгиб. Mousa (2007) продемонстрировал, что прочность на сдвиг углепластика / AAC можно значительно улучшить, обернув простой AAC ламинатом из углепластика. Следовательно, общая стоимость армированных панелей AAC может быть снижена за счет использования ламинатов FRP в качестве внешнего армирования (по сравнению с сэндвич-панелями CFRP / AAC) вместо внутренней стальной арматуры в сочетании с низкозатратными методами обработки, которые будут объяснены в этой главе.В таблице 10.1 перечислены механические свойства AAC, которые используются в текущих исследованиях. В настоящем исследовании использовались однонаправленные углеродные волокна SIKA WRAP HEX 103C и смола SIKADUR HEX 300. Механические свойства смолы, а также ламината, предоставленные производителем (Sika Corporation, 2002), перечислены в таблице 10.2.

Таблица 10.1. Механические свойства простого автоклавного газобетона (AAC)

Свойство Значение
Плотность 40 фунтов на фут (640 кг / м 3 )
Прочность на сжатие 3.2 МПа)
Модуль упругости 1800 МПа (256000 фунтов на кв. Дюйм)
Прочность на сдвиг 17 фунтов на кв. Механические свойства углеродного волокнистого композита SIKA

Свойство SIKA HEX 300 Однонаправленный ламинат
Прочность на растяжение 10500 фунтов на квадратный дюйм (72.4 МПа) 123200 фунтов на квадратный дюйм (849 МПа)
Предел прочности на разрыв 90 ° 3500 фунтов на квадратный дюйм (24 МПа)
Модуль упругости, E x МПа) 10 239 800 фунтов на кв. Дюйм (70 552 МПа)
Модуль упругости, E y 3170 МПа (459 000 фунтов на кв. Дюйм) 705 500 фунтов на кв. xy 362 500 фунтов на квадратный дюйм (2498 МПа)
Относительное удлинение при растяжении 4.8% 1,12%
Толщина слоя 0,04 дюйма (1,016 мм)

В этом исследовании были подготовлены три группы панелей и испытаны на удар с низкой скоростью. Первый — это простые образцы AAC, которые считаются панелями управления. Второй — панели CFRP / AAC, обработанные методом ручной укладки; Панели были зажаты между верхней и нижней однонаправленной пластиной из углеродного волокна (т.10.1) для поперечной арматуры. Третий — это панели CFRP / AAC, имеющие те же характеристики, что и вторая группа, но обработанные с использованием технологии вакуумного литья под давлением (VARTM). В качестве альтернативы трудоемкому процессу ручной укладки VARTM представляет собой привлекательный процесс, поскольку он экономит время обработки, особенно при нанесении нескольких слоев углепластика. VARTM — это процесс формования армированных волокном композитных структур, в котором лист гибкого прозрачного материала, такого как нейлон или майларовый пластик, помещается поверх преформы и затем герметизируется, чтобы предотвратить попадание воздуха внутрь преформы (Perez, 2003).Между листом и преформой создается вакуум для удаления захваченного воздуха. VARTM обеспечивает полное смачивание волокна, гарантирует, что волокно полностью пропитано смолой, и не так утомительно, как метод ручной укладки. VARTM обычно представляет собой трехэтапный процесс, состоящий из укладки волокнистой преформы, пропитки преформы смолой и отверждения пропитанной преформы. Полная процедура обработки панели FRP / AAC с использованием метода VARTM не включена в эту главу для краткости и описана в другом месте (Uddin and Fouad, 2007).Чтобы избежать чрезмерного поглощения смолы ААС из-за поверхности пор, поверхность ААС окрашивают блочным наполнителем. Наполнитель блока состоит из воды, карбоната кальция, винилакрилового латекса, аморфного диоксида кремния, диоксида титана, этиленгиклона и кристаллического кремнезема. Назначение блочного наполнителя — заполнить поверхностные поры, присутствующие на поверхностях панелей AAC, и минимизировать чрезмерное поглощение смолы панелями AAC. Имеет плотность 1461 кг / м 3 . Обычно используется для заполнения пор кирпичной кладки или стен из блоков.Его необходимо наносить на чистые, сухие поверхности, полностью очищенные от грязи, пыли, мела, ржавчины, жира и воска. Его можно наносить с помощью нейлоновой или полиэфирной кисти высшего качества или распылительного оборудования. Время высыхания блочного наполнителя — 2-3 часа. Перед нанесением слоя FRP необходимо выждать 4-6 часов.

10.1. Принципиальная схема сэндвич-панели CFRP / AAC.

В таблице 10.3 показаны типы образцов, использованных в этом исследовании, с кратким описанием каждого из них. Все образцы, протестированные в этом исследовании, были 609.8 мм (24,0 дюйма) в длину и 203,3 мм (8,0 дюйма) в ширину. В обозначении образца первая буква указывает тип производственного процесса, используемого для подготовки образца, а вторая буква указывает толщину образца в дюймах. Например, в образце P-1 «P» представляет собой простой образец AAC, а «1» представляет толщину образца, 25,4 мм (1,0 дюйма). Точно так же «H» представляет образец, обработанный вручную, а «V» представляет образец, обработанный VARTM. Точность размеров всех образцов была близка к ± 2.5 мм (0,1 дюйма). Образцы AAC сушили в печи при 70 ° C (158 ° F) для достижения содержания влаги, указанного в ASTM C 1386 (2007), которое составляет 5-15% по весу.

Таблица 10.3. Подробная информация об испытательных образцах

P-3 24)
Длина, Ширина, Глубина,
Образец мм мм мм 902 902 902 (дюймы) (дюймы)) (дюймы) материал Лицевая панель процесс
P-1 609,8 (24) 203,2 (8) 25,4 (1) A
P-2 609,8 (24) 203,2 (8) 50,8 (2) AAC Нет
203,2 (8) 76.2 (3) AAC Нет
H-1 609,8 (24) 203,2 (8) 25,4 (1) AAC 9022ikrap 9022 103C Ручная укладка
H-2 609,8 (24) 203,2 (8) 50,8 (2) AAC Углеродное волокно Sikawrap
Hex-103C
Ручная укладка Н-3 609,8 (24) 203.2 (8) 76,2 (3) AAC Углеродное волокно Sikawrap
Hex-103C
Ручная укладка
V-1 609,8 (24) 203,2 (8) 1 25,4 (1) ) AAC Углеродное волокно Sikawrap
Hex-103C
VARTM
V-2 609,8 (24) 203,2 (8) 50,8 (2) 9022 Углеродное волокно AAC 900 Шестнадцатеричный-103C VARTM
V-3 609.8 (24) 203,2 (8) 76,2 (3) AAC Углеродное волокно Sikawrap Hex-103C VARTM

IRJET-Запрошенная вами страница не найдена на нашем сайте 9000ET1

IRJET предлагает статьи из различных инженерных и технологических и научных дисциплин для Тома 8, выпуск 7 (июль-2021)

Отправить сейчас


IRJET Vol-8, выпуск 7, июль 2021 г. Публикация в процессе …

Обзор статей


IRJET получил «Импакт-фактор научного журнала: 7.529 «на 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей Системы менеджмента качества.


IRJET приглашает участников различных инженерных и технологических и научных дисциплин для Тома 8 Выпуск 7 ( Июль 2021 г.)

Отправить сейчас


IRJET Vol-8 Выпуск 7, июль 2021 г. Публикация продолжается …

Обзор статей


Получено IRJET «Фактор влияния научного журнала: 7.529 «на 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей Системы менеджмента качества.


IRJET приглашает участников различных инженерных и технологических и научных дисциплин для Тома 8 Выпуск 7 ( Июль 2021 г.)

Отправить сейчас


IRJET Vol-8 Выпуск 7, июль 2021 г. Публикация продолжается …

Обзор статей


Получено IRJET «Фактор влияния научного журнала: 7.529 «на 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей Системы менеджмента качества.


IRJET приглашает участников различных инженерных и технологических и научных дисциплин для Тома 8 Выпуск 7 ( Июль 2021 г.)

Отправить сейчас


IRJET Vol-8 Выпуск 7, июль 2021 г. Публикация продолжается …

Обзор статей


Получено IRJET «Фактор влияния научного журнала: 7.529 «на 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей Системы менеджмента качества.


IRJET приглашает участников различных инженерных и технологических и научных дисциплин для Тома 8 Выпуск 7 ( Июль 2021 г.)

Отправить сейчас


IRJET Vol-8 Выпуск 7, июль 2021 г. Публикация продолжается …

Обзор статей


Получено IRJET «Фактор влияния научного журнала: 7.529 «на 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей Системы менеджмента качества.


IRJET приглашает участников различных инженерных и технологических и научных дисциплин для Тома 8 Выпуск 7 ( Июль 2021 г.)

Отправить сейчас


IRJET Vol-8 Выпуск 7, июль 2021 г. Публикация продолжается …

Обзор статей


Получено IRJET «Фактор влияния научного журнала: 7.529 «на 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей Системы менеджмента качества.


IRJET приглашает участников различных инженерных и технологических и научных дисциплин для Тома 8 Выпуск 7 ( Июль 2021 г.)

Отправить сейчас


IRJET Vol-8 Выпуск 7, июль 2021 г. Публикация продолжается …

Обзор статей


Получено IRJET «Фактор влияния научного журнала: 7.529 «на 2020 год.

Проверить здесь


IRJET получил сертификат регистрации ISO 9001: 2008 для своей Системы менеджмента качества.


IRJET приглашает участников различных инженерных и технологических и научных дисциплин для Тома 8 Выпуск 7 ( Июль 2021 г.)

Отправить сейчас


IRJET Vol-8 Выпуск 7, июль 2021 г. Публикация продолжается …

Обзор статей


Получено IRJET «Фактор влияния научного журнала: 7.529 »на 2020 г.

Газобетон относится к категории легких бетонов. Это смесь воды, цемента и мелко измельченного песка. Газобетон получают путем введения пузырьков газа в пластичную смесь цементно-песчаного раствора. Полученный продукт имеет ячеистую структуру с пустотами размером 0.От 1 до 1 мм аналогично губчатой ​​резине. Кожа ячеек или пустот должна выдерживать давление перемешивания и уплотнения. Полученный в результате бетон известен как пенобетон или ячеистый бетон, но, строго говоря, использование слова «бетон» неуместно, поскольку в нем не используется крупный заполнитель.

Свойства газобетона :

Газобетон имеет следующие свойства:

1. Его можно пилить, резать, прибивать гвоздями. Он может удерживать гвозди.

2. Достаточно прочный.

3. Скорость проникновения воды через газобетон невысока.

4. Лучшая морозостойкость.

5. Высокое водопоглощение. Следовательно, необработанный газобетон не должен подвергаться воздействию агрессивной атмосферы.

Применение ячеистого бетона :

Газобетон обычно используется для следующих целей:

1. Из-за низкой теплопроводности и веса в основном используется для теплоизоляции.

2. Поскольку он обеспечивает лучшую огнестойкость, чем обычный бетон, он используется для защиты от огня.

3. Конструкционный газобетон используется в основном в виде сборных элементов или автоклавных блоков. Его также можно использовать для устройства полов вместо пустотелого плиточного пола.

4. В последнее время используется для световой изоляции.

Способы производства газобетона :

Есть два основных метода производства газобетона.Каждому продукту дается соответствующее название.

1. Газобетон:

Его получают в результате химической реакции с образованием газа в свежем растворе. Когда этот раствор застывает, он содержит большое количество пузырьков газа. Консистенция раствора должна быть такой, чтобы образовавшийся газ мог его расширять, но газ не должен выходить из него, т.е. консистенция раствора должна быть правильной. Скорость газовыделения, консистенция раствора и время его схватывания должны совпадать.

Для производства газа чаще всего используется окончательно измельченный алюминиевый порошок. Доля алюминиевой пудры может составлять 0,2% от массы цемента. Реакция между этим активным порошком и гидроксидом кальция или щелочами высвобождает пузырьки водорода. Также можно использовать порошковый цинк или алюминиевый сплав. Иногда перекись водорода используется для образования пузырьков кислорода.

2. Пенобетон:

Производится путем добавления в смесь пенообразователя, который вводит и стабилизирует пузырьки воздуха во время перемешивания на высокой скорости.Обычно используемый пенообразователь представляет собой некоторую форму гидролизованного белкового или смоляного мыла. В некоторых процессах стабильная предварительно сформированная пена добавляется к раствору во время перемешивания в обычном смесителе.

Газобетон можно изготавливать без песка, но такой бетон можно использовать только для неструктурных целей, например, для теплоизоляции. Плотность газобетона без песка варьируется от 200 до 300 кг / м 3 . Когда газобетон изготавливается из смеси цемента и очень мелкого песка, плотность обычных смесей варьируется от 500 до 1100 кг / м 3 .В случае других легких бетонов прочность газобетона зависит от плотности. Теплопроводность газобетона также зависит от его плотности.

Согласно HOFF, прочность ячеистого бетона может быть выражена как функция пустотности, взятой как сумма созданных пустот и объема испарившейся воды.

Прочность бетона с плотностью 500 кг / м 3 находится в диапазоне от 3 до 4 МПа (от 30 до 40 кг / см 2 и теплопроводность около 0.1 Дж / м 2 S o C / м и для бетона плотностью 1400 кг / н.у. соответствующие значения прочности и теплопроводности будут примерно от 12 до 14 МПа и 0,4 Дж / м 2 S ° C / м.

Для сравнения было установлено, что электропроводность обычного бетона примерно в 10 раз выше, чем у ячеистого бетона. Далее следует отметить, что теплопроводность увеличивается линейно с увеличением содержания влаги. При содержании влаги 20% электропроводность почти вдвое больше, чем при нулевом содержании влаги.

Модуль упругости газобетона обычно варьируется от 1,7 до 3,5 ГПа (от 0,25 до 0,5 x 10 6 фунтов на квадратный дюйм). Его ползучесть, выраженная на основе отношения напряжение / прочность (ползучесть на единицу напряжения), оказывается такой же, как у обычного бетона. Однако на основе равного напряжения удельная ползучесть газобетона оказывается выше по сравнению с обычным бетоном.

Было установлено, что тепловые движения, усадка и влажность ячеистого бетона выше по сравнению с легким заполненным бетоном той же прочности.Но их можно уменьшить с помощью автоклавирования, т. Е. Отверждения с помощью пара. Автоклавирование также улучшает прочность газобетона.

Проницаемость пенобетона, вулканизированного паром при высоком давлении, уменьшается с увеличением его влажности, но даже когда бетон сухой, проницаемость при низком давлении незначительна. Соотношение между плотностью во влажном состоянии и прочностью на сжатие газобетона показано на рис. 22.3. На рис. 22.4 показано соотношение плотности в сухом состоянии и бетона, отвержденного паром под высоким давлением в автоклаве.Текучий газобетон можно получить, применив суперпластификатор.

ПЕРИОДНЫЙ БЕТОН И ЕГО СВОЙСТВА

🕑 Время чтения: 1 минута

Газобетон получают путем введения воздуха или газа в суспензию, состоящую из портландцемента или извести и мелко измельченного кремнистого наполнителя, так что, когда смесь схватывается и затвердевает, образуется однородная ячеистая структура. Хотя это и называется газобетон, на самом деле это не бетон в правильном смысле этого слова.Как описано выше, это смесь воды, цемента и мелко измельченного песка. Газобетон также называют газобетоном, пенобетоном, ячеистым бетоном. В Индии в настоящее время есть несколько заводов по производству пенобетона.

Распространенным продуктом из пенобетона в Индии является Siporex.

Производство газобетона

Существует несколько способов производства газобетона.

(a) За счет образования газа в результате химической реакции в массе в жидком или пластичном состоянии.

(b) Путем смешивания предварительно сформированной стабильной пены с суспензией.

(c) За счет использования мелкодисперсного металлического порошка (обычно порошка алюминия) с суспензией и приведения его в реакцию с гидроксидом кальция, высвобождающимся в процессе гидратации, с выделением большого количества газообразного водорода. Этот газообразный водород, когда он содержится в суспензии, дает ячеистую структуру.

Порошок цинка также может быть добавлен вместо алюминиевого порошка. Вместо металлического порошка также использовались перекись водорода и обесцвечивающий порошок.Но в настоящее время эта практика широко не применяется.

Во втором методе предварительно сформированная устойчивая пена смешивается с цементной и измельченной песчаной суспензией, создавая ячеистую структуру, когда она затвердевает и затвердевает. В качестве незначительной модификации некоторые пенообразующие вещества также смешиваются и тщательно взбиваются или взбиваются (таким же образом, как и при приготовлении пены с яичным белком) для получения эффекта пены в бетоне. Таким же образом можно использовать и тщательно перемешать воздухововлекающий агент в больших количествах, чтобы создать ячеистую пористую структуру в бетоне.Однако этот метод не может быть использован для уменьшения плотности бетона сверх определенной точки, и поэтому использование воздухововлечения нечасто практикуется для изготовления пенобетона.

Метод газификации — один из наиболее широко применяемых методов с использованием алюминиевого порошка или другого подобного материала. Этот метод применяется при крупномасштабном производстве газобетона на заводе, где весь процесс механизирован, а продукт подвергается отверждению паром под высоким давлением, т.е.е., другими словами, продукты автоклавированы. Такие изделия не будут иметь потери прочности или нестабильности размеров.

Практика использования предварительно отформованной пены с суспензией ограничивается мелкосерийным производством и работами на месте, где допускается небольшое изменение размерной стабильности. Но преимущество в том, что этим методом можно добиться любой желаемой плотности на месте.

Свойства газобетона

Использование пенобетона стало популярным не только из-за низкой плотности, но и из-за других свойств, в первую очередь теплоизоляционных.Газобетон изготавливается в диапазоне плотности от 300 кг / м3 до примерно 800 кг / м3. Классы с более низкой плотностью используются для целей изоляции, в то время как классы со средней плотностью используются для изготовления строительных блоков или несущих стен, а классы с более высокой плотностью используются в производстве сборных конструктивных элементов в сочетании со стальной арматурой.

(PDF) Исследование производства газобетонных блоков в Бангладеш

IJISET ‐ Международный журнал инновационных наук, инженерии и технологий, Vol.2Issue3, March2015.

www.ijiset.com

ISSN2348 – 796

200

Исследование производства газобетонных блоков в

Бангладеш

Ахсан Хабиб, Хосне Ара Бегум, англ. Rubaiyet Hafiza

Жилищно-строительный научно-исследовательский институт

Дарус-Салам 120/3, Мирпур, Дакка-1216, Бангладеш

РЕЗЮМЕ

Основная цель этой статьи — представить

возможности и методы формирования газированных

бетон в контексте Бангладеш.В этом эксперименте

для процесса аэрации использовался метод получения газообразного водорода

. В этом методе газификации

тонкоизмельченный алюминиевый порошок

был добавлен к суспензии обычного портландцемента с

различных процентных соотношений, таких как 0,05%, 0,1%, 0,15%,

0,2% и 0,25%. Чтобы определить влияние алюминиевого порошка

на свойства конечного продукта, были проведены испытания

, такие как плотность, водопоглощение

и испытание на прочность при сжатии.Тем не менее, было замечено, что бетон, содержащий 0,15% алюминиевого порошка

, способствует повышению прочности

процесса газобетона.

Ключевые слова- Автоклавный газобетон, Алюминиевый порошок.

ВВЕДЕНИЕ

Обычные строительные материалы недоступны для большинства населения Бангладеш

из-за их низкой доступности по цене

. Помимо роста стоимости строительных материалов на

, рост экологических проблем

в связи с интенсивной эксплуатацией природных ресурсов

, связанных с общим строительством и другими

жилищного строительства, требует поиска

альтернативных технологических вариантов.В этом документе делается попытка

найти устойчивую и доступную альтернативу

материалу для замены традиционных кирпичей для основных строительных приложений

. С этой целью было проведено исследование

на газобетоне. Газобетон

, также известный как автоклавный газобетон

(AAC), автоклавный ячеистый бетон (ACC) или

Легкий бетон

автоклавного твердения (ALC)

(1)

, было изобретено

в середине 1920-е годы шведского архитектора

и изобретателя Йохана Акселя Эрикссона

(2) (3)

.

Автоклавный газобетон (AAC) — популярный строительный материал

, который используется во всем мире. Его

имеет успешную 50-летнюю историю, может использоваться во всех

средах для всех типов зданий (Wittmann,

1983, 1992)

(4) (5)

.

Это легкий сборный строительный материал

, который одновременно обеспечивает структуру, изоляцию

, огнестойкость и устойчивость к плесени. В зависимости от плотности

до 80% объема блока AAC составляет

воздуха.Низкая плотность AAC также объясняет его низкую прочность конструкции на сжатие

. Он может выдерживать нагрузки от

до 8 МПа (1160 фунтов на квадратный дюйм), что составляет примерно 50% от прочности на сжатие

обычного бетона

(6)

. AAC

был впервые коммерчески произведен в Швеции в 1923 году.

С тех пор производство и использование пенобетона

распространилось в более чем 40 странах на всех континентах

, включая Северную Америку, Центральную и

Южную Америку, Европа, Ближний Восток, Дальний Восток

и Австралия.Благодаря этому обширному опыту было произведено

многочисленных тематических исследований использования в различных климатических условиях и

в соответствии с различными строительными нормами. В США

современных применений AAC началось в 1990 году для жилых

и коммерческих проектов в Юго-восточных штатах.

Производство простых и усиленных ААС в США началось

в 1995 году на юго-востоке страны и с тех пор распространилось на другие

частей страны. Общенациональная группа производителей AAC

была сформирована в 1998 году как Ассоциация по производству газобетонных изделий Autoclaved

(AACPA, www.aacpa.org). Положения по проектированию и строительству

для кирпичной кладки AAC приведены в Кодексах и спецификациях MSJC

. AACPA включает одного производителя

в Монтеррее, Мексика, и многие технические материалы

доступны на испанском языке. AAC

одобрен для использования в категориях сейсмического проектирования A, B

и C Дополнением 2007 г. к Международным строительным нормам

, а в других географических точках —

с одобрения местного строительного органа

(7)

.Многие

исследователей были выполнены на AAC. Johan

Alexanderson (1979) изучил взаимосвязь между структурой

и механическими свойствами газобетона автоклава

и обнаружил, что прочность газобетона

, особенно цемента и извести,

увеличивается с увеличением количества гидратов и

с уменьшающейся пористостью. П.Г. Burstrom (1980)

изучил герметики между элементами из ячеистого бетона

и сообщил, что из-за низкой прочности на разрыв

газобетона герметизация стыков между такими элементами

вызывает особую проблему.Cabrillac R et al.

(1996) сообщили о проблемах оптимизации пористости и свойств газобетона

. N.

Narayanan, K. Ramamurthy (2000) изучили около

микроструктурных исследований

на ячеистом бетоне и

сообщили, что причины изменений прочности на сжатие

и усадки при высыхании объясняются со ссылкой на

на изменения микроструктуры. . Хуля Кус

и Томас Карлссон (2003) изучили около микро

структурные исследования естественного и искусственно выдержанного автоклавного газобетона

.Hulya Kus et

,

al (2004) сообщили об оценке эксплуатационных характеристик

стен из гипсокартона

из гипсокартона путем долгосрочного мониторинга влажности. A. Laukaitis

и B Fiks (2006) сообщили об акустических

свойствах газобетона автоклавного твердения и обнаружили

, что оценка акустических качеств AAC составляет

на основе воздухопроницаемости и пористости материала.

A. Laukaitis et al (2009) сообщили о влиянии

волокнистых добавок на свойства автоклавированных газобетонных смесей

и прочностные характеристики

изделий.Обработка в автоклаве, выполняемая при высокой температуре и давлении

экономически выгодна

Все об автоклавном ячеистом бетоне (AAC)

Автоклавный газобетон (AAC) — это сборный железобетон, состоящий из натурального сырья. Впервые он был разработан в Швеции в 1920-х годах, когда архитектор впервые объединил обычную бетонную смесь из цемента, извести, воды и песка с небольшим количеством алюминиевой пудры. Алюминиевая пудра служит расширителем, который заставляет бетон подниматься, как тесто для хлеба.В результате получается бетон, который почти на 80 процентов состоит из воздуха. Бетон AAC обычно превращается в блоки или плиты и используется для строительства стен из цементного раствора, аналогично тому, как это используется для строительства стандартных бетонных блоков.

Как производится газобетон

Автоклавный газобетон начинается с того же процесса, который используется для смешивания всего бетона: портландцемент, заполнитель и вода смешиваются вместе, образуя суспензию. При введении алюминия в качестве расширительного агента пузырьки воздуха проникают по всему материалу, образуя легкий материал с низкой плотностью.Мокрый бетон формуют в формы с помощью форм, а затем разрезают на плиты и блоки после частичного высыхания. Затем блоки перемещаются в автоклав для полного отверждения под действием тепла и давления, что занимает всего от 8 до 12 часов.

Бетонные блоки AAC очень удобны в обработке, их можно резать и сверлить с помощью обычных деревообрабатывающих инструментов, таких как ленточные пилы и обычные дрели. Поскольку бетон легкий и относительно невысокий, его необходимо испытывать на прочность на сжатие, содержание влаги, объемную плотность и усадку.

Здание из бетона AAC

Бетон AAC можно использовать на стенах, полу, кровельных панелях, блоках и перемычках.

  • Панели доступны толщиной от 8 дюймов до 12 дюймов и 24 дюймов в ширину и длиной до 20 футов.
  • Блоки бывают длиной 24, 32 и 48 дюймов и толщиной от 4 до 16 дюймов; высота 8 дюймов.

Затвердевшие блоки или панели из газобетона в автоклаве соединяются с тонким слоем раствора с использованием техник, идентичных тем, которые используются со стандартными бетонными блоками.Для дополнительной прочности стены могут быть усилены сталью или другими конструктивными элементами, проходящими вертикально через пространства в блоках.

Бетон AAC можно использовать для стен, полов и крыш, а его легкий вес делает его более универсальным, чем стандартный бетон. Материал обеспечивает отличную звуко- и теплоизоляцию, а также прочность и огнестойкость. Однако, чтобы быть долговечным, AAC должен быть покрыт нанесенной отделкой, такой как модифицированная полимером штукатурка, натуральный или искусственный камень или сайдинг.Если они используются для подвалов, внешняя поверхность стен из автоклава должна быть покрыта толстым слоем водонепроницаемого материала или мембраны. Поверхности AAC, подверженные воздействию погодных условий или влаги почвы, будут разрушаться. Внутренние поверхности можно отделать гипсокартоном, штукатуркой, плиткой или краской или оставить незащищенными.

Свойства газобетона

По сути, AAC предлагает только умеренные значения изоляции — около R-10 для стены толщиной 8 дюймов и R-12,5 для стены толщиной 10 дюймов. AAC предлагает значение R около 1.25 на каждый дюйм толщины материала. Но AAC имеет высокую тепловую массу, что замедляет передачу тепловой энергии и может значительно снизить затраты на нагрев и охлаждение. А конструкции AAC можно сделать очень герметичными, чтобы уменьшить потери энергии из-за утечек воздуха. AAC также создает отличный звукоизоляционный барьер.

Недвижимость Газобетон Традиционный бетон
Плотность (PCF) 25–50 80–150
Прочность на сжатие (PSI) 360–1090 1000–10000
Огнестойкость (ч) ≤ 8 ≤ 6
Теплопроводность (Btuin / ft2-hr-F) 0.75–1,20 6,0–10

Преимущества и приложения

Некоторые из преимуществ использования автоклавного газобетона включают:

  • Отличный материал для звукоизоляции и звукоизоляции
  • Огнестойкий и термитостойкий
  • Доступны в различных формах и размерах
  • Высокая тепловая масса накапливает и выделяет энергию с течением времени
  • Вторичный материал
  • Простота в обращении и установке благодаря малому весу
  • Легко режется для пазов и отверстий для электрических и сантехнических линий
  • Экономичность при транспортировке и транспортировке по сравнению с заливным бетоном или бетонным блоком

Недостатки

Как и все строительные материалы, у AAC есть ряд недостатков:

  • Товары часто отличаются по качеству и цвету.
  • Необработанные внешние стены требуют внешней облицовки для защиты от погодных условий.
  • При установке в среде с высокой влажностью внутренняя отделка требует низкой паропроницаемости, а внешняя — высокой.
  • Показатель R
  • относительно низок по сравнению с энергоэффективной изолированной стеновой конструкцией.
  • Стоимость выше обычной бетонно-блочной и каркасной конструкции.
  • Прочность AAC составляет от 1/6 до 1/3 прочности традиционного бетонного блока.

Цены на блоки AAC

Базовый блок AAC стандартного размера 8 x 8 x 24 дюйма стоит от 2,20 до 2,50 доллара за квадратный фут по состоянию на июль 2018 года, что немного больше, чем стандартный бетонный блок, который стоит около 2 долларов за квадратный фут. Однако затраты на рабочую силу для AAC могут быть ниже, поскольку его меньший вес упрощает транспортировку и установку. Стоимость будет варьироваться от региона к региону и зависит от местных ставок оплаты труда и требований строительных норм.

.

Comments

No comments yet. Why don’t you start the discussion?

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Международная школа бизнеса (2007-2024)
    Scroll to Top