Принцип работы аэротрубы: Что такое аэротруба? | Bodyfly – Вертикальная аэродинамическая труба — Википедия

Содержание

Вертикальная аэродинамическая труба — Википедия

Материал из Википедии — свободной энциклопедии

Вертикальная аэродинамическая „штопорная“ труба Т-105 в ЦАГИ (1941 год постройки)

Вертикальная аэродинамическая труба — аэродинамическая труба, в которой воздух движется вертикально вверх.

В частности, это позволяет имитировать свободное падение при парашютном прыжке. Трубы используются в развлекательных целях, для тренировки спортсменов-парашютистов и подготовки военных. Труба часто рекламируются как отличное средство для тех, кто хочет попробовать прыжок с парашютом, но испытывает страх высоты.

Полёт в вертикальной аэродинамической трубе

Вертикальные трубы делятся на два типа:

  • С нижним расположением винта (наддувающие)
  • С верхним расположением винта (высасывающие)

Наддувающие трубы — самые простые. Двигатель через редуктор приводит в движение большой винт, установленный под сеткой. Рабочая зона обычно не ограничена ничем. Человек вылетевший из потока падает на сетку или на надувные подушки вокруг рабочей зоны. Такие трубы могут быть мобильными, часто используются для различных шоу и аттракционов, хорошо привлекают внимание.

Трубы с верхним расположением винта как правило монтируются в специально построенном здании. Сверху рабочей зоны, огороженной прозрачной стенкой устанавливаются 2 или 4 двигателя с винтами, которые высасывают воздух, проходящий через рабочую зону. В таких трубах отсутствует (минимальна) турбулентность в рабочей зоне. Трубы могут быть открытого и закрытого типа. В трубе закрытого типа воздух циркулирует по замкнутому циклу, это предпочтительно в странах с холодным климатом.

Для создания потока используется один или несколько электрических или дизельных двигателей. Средняя скорость потока в трубах составляет от 190 до 260 км/ч[1], а минимальная скорость потока для отрыва взрослого человека в «балахоне» составляет около 130 км/ч[2]. Оператор, наблюдающий за рабочей зоной, может своевременно прибавлять и убавлять скорость потока по мере надобности.

Так как давление потока растет пропорционально квадрату скорости потока, разница в скорости «падения» даже самых тяжелых и самых легких людей не превышает 20—30 км/ч. Такая разница в скорости может быть легко скомпенсирована одеждой и позой в потоке.

Вертикальная аэродинамическая труба характеризуется диаметром рабочей зоны и максимальной мощностью. Диаметр рабочей зоны может быть от 1,8 м (на 1 человека) до 5 м, где может тренироваться команда из 8 человек.

Открытая труба на площади Рассел-сквер, Лондон

Впервые человек взлетел в вертикальной аэродинамической трубе в 1964 году, на воздушной базе Райт-Патерсон, Огайо, США.

Широкое распространение трубы получили в конце 1990-х, с увеличением популярности парашютного спорта.

На церемонии закрытия XX зимних олимпийских игр в Турине в 2006 году была показана большая вертикальная труба «Wind Machine», над которой парили спортсмены, иллюстрирующие разные зимние виды спорта

[3]. Вертикальная труба была изготовлена компанией «Аэродиум».

Во время презентации официального логотипа Олимпиады «Sochi 2014» в 2009 году в представлении на Красной площади участвовали исполнители трюков в вертикальной аэродинамической трубе.

Латвийский павильон на выставке Expo 2010 оборудован открытой вертикальной аэродинамической трубой.

Поведение тела в потоке вертикальной аэродинамической трубы очень похоже на поведение тела при достижении терминальной скорости во время прыжка с парашютом. Появился даже новый термин «bodyflight», полет телом. Используя ноги, руки и все тело как рули, можно делать перемещения (транзиты), повороты, регулировать скорость падения. Точность и скорость выполнения имеет большое значение в парашютных видах спорта: групповой акробатике (RW), больших формациях и вертикальном FF.

В трубе могут проводиться и соревнования. В этом есть плюсы: нет зависимости от погоды, от самолета и наличия кворума. Многие трубные инструкторы с большим налётом могут иметь малое количество прыжков с парашютом, и при этом выступать на профессиональном уровне[4].

Что такое аэротруба? Аттракцион, который поможет взлететь » Блог Freezone

С появлением аэродинамической трубы любители экстрима могут наслаждаться свободным полетом в воздухе без риска для здоровья. Тренажер имеет безопасную, продуманную конструкцию, потому практически не имеет ограничений и может быть испытан широкой аудитории посетителей.  

  Содержание

1. Немного истории: цели использования аэродинамической трубы

2. Конструкция и принцип  работы аэродинамической трубы

3. Аэродинамический тренажер: развлечение или спорт?

4. Свободные полеты: от мала до велика

Немного истории: цели использования аэродинамической трубы

Наши предки с незапамятных времен мечтали о свободном полете и пытались создать аппараты, которые поднимут их к небесам. С годами было сделано десяток научных открытий и человечеству стали доступны различные технические средства, позволяющие преодолеть земную гравитацию. Одна из таких разработок – вертикальная аэродинамическая труба. Первую аэротрубу сконструировали в 1871 году в Великобритании. Устройство предназначалось для научных испытаний – с его помощью наблюдали за поведением твердых тел в потоке воздухе. Одновременно с тем аэродинамическая труба была построена в России. Оборудование использовалось для разработок и испытаний в военном деле. Изобретение аэротрубы стало большим вкладом для авиационной промышленности – она помогала тестировать парашюты, самолеты и другие летательные аппараты.

5.jpg


 Для полетов человека аэротрубу стали применять только в 1964 году в США. Установка помогала отрабатывать необходимые навыки космонавтам и спортсменам-парашютистам. Лишь только в 2000-х годах это изобретение стало использоваться как аттракцион. Свободные полеты в воздухе вызывают у людей потрясающие и незабываемые эмоции, что способствует популяризации такого развлечения. Опробовать прыжки в аэротрубе предлагает комплекс FREEZONE. Два огромных аэродинамических тренажера подойдут как для новичков, так и для профессиональных спортсменов, желающих повысить уровень своего мастерства при спуске с парашютом. Попробуем разобраться, что это такое аэродинамический симулятор?

Назад к содержанию

Конструкция и принцип работы аэродинамической трубы

 Аэротруба – это специализированный тренажер, что позволяет испытать ощущения свободного падения. Раньше подобные эмоции можно было пережить, только прыгнув с парашютом. Однако немногие готовы рискнуть жизнью, сиганув с самолета. Такое развлечение опасно, не каждому под силу преодолеть страх высоты. Аэротруба как аттракцион вполне безопасен. Пройдя инструктаж, посетитель легко освоиться в воздушном пространстве. Принцип действия технической установки основан на нагнетании воздуха. Аэротруба работает за счет одного или нескольких крупных вентиляторов, которые создают мощный воздушный поток скоростью 190 до 260 км/ч в вертикальной трубе. Конструкции современных тренажеров отличаются по нескольким параметрам:

  • Расположением вентилятора. Он может находиться в верхней или нижней части трубы.
  • Размером полетной зоны. Оборудование отличается высотой и диаметром.
  • Скоростью воздушного потока. Показатель зависит от мощности вентилятора аэротрубы.
  • 4.png

     Чтобы обезопасить человека, находящего внутри тренажера от травм, полетная зона ограждена специальной металлической сеткой. Она не позволит посетителю попасть в лопасти вентиляторов аэротрубы. В течение всего времени полета за рабочей зоной наблюдает оператор. Он регулирует скорость потока в зависимости от физической подготовки и навыков клиента. Перед каждым сеансом в аэродинамическом тренажере посетитель проходит инструктаж. В процессе тренер расскажет, как устроена аэротруба, ознакомит с техникой безопасности и проинформирует, что следует делать, находясь внутри симулятора. Опытный персонал центра FREEZONE поможет быстро привыкнуть к состоянию свободного падения, овладеть телом и за несколько сеансов совершать несложные трюки. Как работает аэротруба и ее принцип действия станет более понятен на практике.

    Назад к содержанию

    Аэродинамический тренажер: развлечение или спорт?

     Многие специалисты до сих пор расходятся во мнении, аэротруба что это: спортивный тренажер или экстремальное развлечение? Сегодня техническое устройство соединяет в себе несколько функций. Парашютисты тренируются в аэротрубах, чтобы улучшить профессиональные навыки и отточить трюки. Специалисты утверждают, что аэродинамический полет сравним с парашютными прыжками. Он дает в полной мере ощутить, что такое состояние свободного падения. Потому желающие совершить затяжной прыжок с парашютом изначально пробуют свои силы в аэротрубе. Для детей аэродинамический тренажер служит своеобразным увлекательным аттракционом.  Для взрослых аэротруба – это прекрасный активный отдых, интересный способ провести досуг.

    Благодаря тому, что аэродинамическая установка устроена как тренажер, кроме приятных эмоций вас ожидает:

    • Находясь внутри аэротрубы, посетитель активно сжигает калории.
    • При таких нагрузках прекрасно работает мышечный корсет, улучшается координация движений.
    • Другие экстремальные развлечения вряд ли подарят столько положительных эмоций как аэротруба. Организм во время тренировок синтезирует гормон счастья, который укрепляет нервную систему и улучшает иммунитет.

    парк развлечений Фризон.jpg

    Аэротруба устроена просто, однако ее применение довольно широко. Нередко походы в аэродинамический комплекс превращаются для людей в хобби. Сегодня часто проводят спортивные соревнования по полетам в трубе, где участники соревнуются в мастерстве, исполняют сложные трюки и даже танцуют. Большие достижения начинаются с малого. Запишитесь на первый сеанс полета в аэротрубе в комплексе FREEZONE на удобное время. Кроме того, у нас можно купить подарочный сертификат, чем вы порадуете своих родных или близких. 

    Назад к содержанию

    Свободные полеты: от мала до велика

     Принцип действия аэротрубы понятен, теперь осталось разобраться, кого допускают к данному виду развлечений. При соблюдении техники безопасности аэродинамический тренажер не причинит вреда здоровью человека. Главное в аэротрубе избегать касаний в боковые стенки, не хвататься за защитную сетку. К полетам допускаются даже дети (от 4 лет) и пожилые люди (до 70 лет). Показатели достаточно условны – все зависит от веса (он должен находиться в пределах 20-130 кг), состояния здоровья и физической формы. Аэротруба – это тренажер с минимальным списком противопоказаний. Не рекомендуют совершать полеты:

    • беременным;
    • лицам с психическими отклонениями;
    • при наличии заболеваний опорно-двигательной системы, остеопороза;
    • людям, недавно перенесшим травму.

     Комплекс FREEZONE приглашает всех желающих полетать в аэродинамической трубе и провести торжественные мероприятия в пределах центра. Наша команда организует великолепный праздник, будь то детский день рождение, корпоративное мероприятие или другое значимое событие. Сеансы полетов в аэротрубе станут неотъемлемой частью развлекательной программы. К услугам клиентов большой конференц-зал, хороший ресторан с собственной кухней, квалифицированный персонал, способный позаботиться о вашем комфорте. Окунитесь в мир удовольствия и экстрима. 

    Назад к содержанию

Аэродинамическая труба — Википедия

Аэродинамическая труба ГУМРФ с открытой рабочей частью

Аэродинами́ческая труба́ — техническое устройство, предназначенное для моделирования воздействия среды на движущиеся в ней тела. Применение труб в аэродинамике базируется на принципе обратимости движений и теории подобия физических явлений. Объектами испытаний в аэродинамических трубах являются модели натурных летательных аппаратов или их элементов (геометрически подобные, упруго подобные, термически подобные и т. д.), натурные объекты или их элементы, образцы материалов (унос материалов, каталитичность поверхности и т. д.).

Аэродинамическая труба состоит из одного или нескольких вентиляторов (или других устройств нагнетания воздуха), которые нагнетают воздух в трубу, где находится модель исследуемого тела, тем самым создаётся эффект движения тела в воздухе с большой скоростью (принцип обращения движения).

Аэродинамические трубы классифицируют по диапазону возможных скоростей потока (дозвуковые, трансзвуковые, сверхзвуковые, гиперзвуковые), размеру и типу рабочей части (открытая, закрытая), а также поджатию — соотношению площадей поперечных сечений сопла трубы и форкамеры. Также существуют отдельные группы аэродинамических труб:

  • Высокотемпературные — дополнительно позволяют изучать влияние больших температур и связанных с ними явлений диссоциации и ионизации газов.
  • Высотные — для исследования обтекания моделей разреженным газом (имитация полёта на большой высоте).
  • Аэроакустические — для исследования влияния акустических полей на прочность конструкции, работу приборов и т. п.

Исследование характеристик надводных и подводных частей корпуса судов приходится выполнять с использованием дублированных моделей, что позволяет удовлетворить условию непротекания по поверхности раздела сред. В качестве альтернативы возможно использование специального экрана, имитирующего поверхность воды.

Центральный аэродинамический институт имеет 60 различных аэродинамических труб для скоростей от 10 м/с до M=25, некоторые из них (СМГДУ с магнитогидродинамическим разгоном до 8000 м/с, УСГД с давлением торможения 5000 атм) уникальны[1].

Импеллер (рабочее колесо) аэродинамической трубы ГУМРФ Дублированная модель надводной части судна в аэродинамической трубе ГУМРФ

Измерение давлений по поверхности тела[править | править код]

Для исследования необходимо изготовить дренированную модель тела — в поверхности модели выполняются отверстия, которые соединяются шлангами с манометрами.

В гидромеханике доказано, что давление без изменений передается поперек пограничного слоя, что позволяет рассчитать сопротивление давления тела по результатам измерения давлений.

Измерение сил и моментов, действующих на тело[править | править код]

Для исследования необходимо подвесить модель на многокомпонентном динамометре (Аэродинамические весы) либо на системе растяжек, позволяющей измерять натяжение каждой растяжки.

Пересчет сил и моментов, действующих на тело, осуществляется в соответствии с критерием подобия Рейнольдса.

Визуализация течений[править | править код]

Для решения этой задачи используют шерстяные нити (шелковинки), наклеенные на поверхность модели либо закрепленные на проволочной сетке. Возможна постановка эксперимента с подачей цветного дыма в характерные зоны потока, но продолжительность такого эксперимента (в трубах с повторной циркуляцией воздуха), как правило, весьма мала вследствие общего задымления всего аэродинамического тракта.

Первые в мире аэродинамические трубы были построены 1871 году членом Совета Королевского авиационного общества Великобритании Фрэнсисом Гербертом Уэнхемом (Francis Herbert Wenham) и русским военным инженером В. А. Пашкевичем[2][3]. Уэнхем использовал свою аэродинамическую трубу для исследований несущих свойств крыла[4], тогда как труба Пашкевича предназначалась для определения аэродинамических характеристик артиллерийских снарядов[3].

В 1897 году К. Э. Циолковский построил прототип аэродинамической трубы собственной конструкции, использовав поток воздуха на выходе из центробежного вентилятора, и впервые в России применил этот агрегат для изучения эффектов, проявляющихся при обтекании твёрдых тел (самолётов, автомобилей, ракет) воздушным потоком.

Под руководством Н. Е. Жуковского при механическом кабинете Московского университета в 1902 году была сооружена аэродинамическая труба, в которой осевым вентилятором создавался воздушный поток со скоростью до 9 м/с.

Первая аэродинамическая труба разомкнутой схемы была создана Т.Стантоном в Национальной физической лаборатории в Лондоне в 1903 году., вторая — Н. Е. Жуковским в Москве в 1906 году.

Первая замкнутая аэродинамическая труба построена в 1909 году в Гёттингене Людвигом Прандтлем, вторая — в 1910 году Т. Стантоном.

Первая аэродинамическая труба со свободной струей в рабочей части была построена Гюставом Эйфелем в Париже на Марсовом поле в 1909 году.

Дальнейшее развитие шло преимущественно по пути увеличения их размеров и повышения скорости потока в рабочей части (где помещается модель).

В 1934 году в районе Берлина построена Большая аэродинамическая труба (Адлерсхоф) для аэродинамического моделирования. В трубе диаметром от 8,5 до 12 м размещались части самолётов и изучалось воздействие на них горизонтальных воздушных потоков. Особенностью данной аэродинамической трубы является бетонное сооружение «Zeiss-Dywidag» с толщиной стенок всего 8 сантиметров. В настоящее время сохраняется как памятник промышленной архитектуры в составе Аэродинамического парка.

Впервые человек взлетел в вертикальной аэродинамической трубе в 1964 году на воздушной базе Райт-Патерсон, Огайо, США.

  1. ↑ ЦАГИ — Экспериментальная база
  2. ↑ Энциклопедия «Авиация». — М.: Научное издательство «Большая Российская Энциклопедия», 1994. — 736 с.
  3. 1 2 Авиация в России. — М.: Машиностроение, 1983.
  4. Соболев Д. А. История самолётов. Начальный период.. — М.: РОССПЭН, 1995. — 343 с.

Аэротруба – как правильно летать в аэротрубе?

Аэротруба – как правильно летать в аэротрубе?

Популярность парашютного спорта подтолкнула к созданию конструкции, которая бы давала возможность ощутить полет, не прыгая с высоты. Аэротруба имеет простую конструкцию и используется в качестве аттракциона, спортивного тренажера для парашютистов и отдельной дисциплины.

Аэротруба – свободный полет

Приспособление для имитации полета благодаря искусственному движению воздуха, называется вертикальной аэротрубой. Есть разные варианты устройств, которые имеют диаметр от 2 до 5 м. Высота аэротрубы составляет более 10 м. Скорость потока воздуха может варьироваться от 200 до 250 км/ч, а создает его двигатель с большим винтом. Оператор, управляющий трубой, может постоянно менять скорость потока воздуха. Аэродинамическая труба может быть надувающей (винт находится снизу, а закрывает его батутная сетка) и высасывающей (винт расположен сверху, а сетка находится с двух сторон).

Полеты в трубе не требуют специальной подготовки и нужно просто приехать на место, прослушать технику безопасности и пройти небольшую тренировку. Поначалу может не получаться, но не стоит переживать, ведь это новые ощущения. Вскоре тело привыкнет к движениям и будет понятно, как стоит двигаться в потоке. Чтобы аэротруба не навредила, не рекомендуется находиться в ней дольше, чем 15 мин. Уже спустя пару минут парения можно понять, как движения влияют на полет, научиться, как правильно разворачиваться в потоке, двигаться вверх и вниз, а еще ощутить, что такое свободное падение.

Если сравнивать с прыжками в парашютом, то в аэротрубе можно летать намного дольше (до 15 мин.). Польза, которую можно получить при регулярном использовании аттракциона:

  1. Происходит потеря лишнего веса, поскольку стремительно сжигаются калории. Исследования показали, что за полчаса нахождения в трубе можно потратить столько же энергии, как если пробежать марафон в 42 км.
  2. Развивается координация движения, и нагружаются мышцы стабилизаторы. Объясняется это тем, что в состоянии парения тело ощущается совсем по-другому.
  3. Происходит улучшение работы нервной системы и укрепление иммунитета, поскольку во время полета в организме вырабатывается «гормон счастья».
аэротруба свободный полет

Аэротруба – со скольки лет?

Возрастных ограничений полеты в аэротрубе практически не имеют, и наслаждаться таким развлечением могут даже маленькие дети, которым исполнилось 4 года. Такие тренировки для ребенка будут полезными, поскольку происходит развитие мышц, ловкости, избавление от психофизических зажимов и других проблем. Для аэротрубы возраст не является единственным ограничением, и нужно учитывать и вес человека, так допустимый предел 25-120 кг.

Как правильно летать в аэротрубе?

Большое значение имеет предварительное занятие и инструкция работников аэротрубы. Кроме того, что для хорошего полета нужно расслабиться, необходимо знать, как правильно лежать на воздухе:

  1. Упор на поток должен приходиться на живот, а еще важен прогиб в тазовой области.
  2. Чтобы полетать в аэротрубе, руки держите в одной плоскости с корпусом, согнув их в локтях под прямым углом. Важно не задирать локти вверх и не ломать горизонтальную линию.
  3. Голову приподнимите и смотрите немного вверх. Ноги при этом следует слегка согнуть и расположить их немного шире плеч. Кроме этого, оттяните носки и приподнимите бедра.

Чтобы аэротруба не стала причиной появления травм, соблюдайте простые правила:

  1. Во время полета нельзя держаться руками за нижнюю сетку. К тому же это не позволит сдвинуться с места и правильно удерживаться на потоке воздуха.
  2. Чтобы не потерять ощущение свободного полета, не старайтесь упираться руками и ногами в боковые стенки. В противном случае это может привести к падению, поскольку будет утерян воздушный поток.
  3. Запрещено выставлять одну руку или ногу, группироваться и совершать другие движения, которые приводят к уменьшению площади тела, поскольку это может привести к падению.

Упражнения в аэродинамической трубе

В установке выполняются разные упражнения, как и при прыжках с парашютом. Полет в аэротрубе включает:

  1. Хед даун – полеты в перевернутом состоянии, то есть вниз головой.
  2. Бэкфлай – полеты на спине, во время которых можно почувствовать работу конечностей и спины.
  3. Ситфлай – полеты, в положении сидя, но упор приходится на спину, заднюю поверхность бедра и ступни.
  4. Хед Ап – полеты при вертикальном положении тела головой вверх.
  5. Фрифлай – изменение положения тела в разных плоскостях.
упражнения в аэродинамической трубе

Аэротруба – новый вид спорта

Чудо-установка используется для проведения тренировок парашютистов и любителей других экстремальных направлений. Полет в аэродинамической трубе помогает отрабатывать акробатические фигуры и осваивать воздушные потоки. Стоит заметить, что отдельным видом спорта является не только парашютный, но и полеты в аэротрубе. Новинкой являются танцы в этой установке, так, по ним уже проводятся международные соревнования, которые выглядят очень зрелищно.

Аэротруба – соревнования

С самого начала полеты в аэротрубе начали становиться все популярнее, и они быстро развиваются как спорт. В аэротрубе фрифлай, акробатика, фристайл и другие виды парашютного спорта с успехом практикуются. Проводятся кубки и чемпионаты по групповой акробатике в трубе и даже есть отдельная дисциплина – вертикальная акробатика. Судьи оценивают эстетику трюков, синхронность и красоту выполнения фигур. Может уже через пару лет полеты в аэротрубе будут внесены в перечень дисциплин на Олимпийских играх.

Танцы в аэротрубе

В аэродинамической трубе проходят международные соревнования по танцам, которые называются WindGames. Спортсмены выполняют сложные трюки и поднимаются на большую высоту. Программа включает индивидуальные и групповые выступления. Соревнования в аэротрубе проводятся по всем правилам, так, присутствует жюри, ограничивается время выступления, штрафные баллы и так далее. Поскольку в трубе ничего не слышно, участник надевает наушники, чтобы слышать музыку. Чемпион мира по танцам в аэротрубе 2016 году – россиянин Леонид Волков.

Сколько стоит полетать в аэротрубе?

Во многих больших городах можно найти такой аттракцион, как аэротруба. Находиться в ней можно разное время и все зависит от подготовки. Первый раз специалисты не рекомендуют летать дольше 4-6 мин. За это время можно научиться контролировать свое тело в воздухе, но при этом не устать. Аэротруба, стоимость которой зависит от времени нахождения в ней, может принимать сразу нескольких людей. За полет одного человека на протяжении 5 мин. придется заплатить от $25.

Аэродинамическая труба – противопоказания

Для того чтобы парить в трубе не нужно особой физической подготовки, поэтому к полетам допускают даже детей. Есть ряд противопоказаний, при которых подобные развлечения запрещены: беременность, проблемы с сосудами и сердцем, психические отклонения, серьезные заболевания опорно-двигательного аппарата и травмы спины. Летать в аэродинамической трубе нельзя в состоянии алкогольного опьянения. Если есть страх и переживания по поводу своего здоровья, тогда следует проконсультироваться с врачом.

 

Конструктивные особенности разных видов аэротруб

Конструктивные особенности разных видов аэротруб

Первоначально аэродинамические трубы разрабатывались для проведения испытаний на промышленных предприятиях, проектирующих и выпускающих автомобили, воздухоплавательную и другую технику, в конструкции которой необходимо было учитывать аэродинамические параметры. Но со временем эти установки заинтересовали профессиональных летчиков и парашютистов, так как с их помощью открылась возможность отрабатывать технику свободного полета без привязки к погодным условиям, наличию авиатранспорта и другим составляющим летных испытаний И уже после многих лет профессионального использования аэротрубы стали доступны простым обывателям в качестве увлекательного экстремального аттракциона.

Виды аэротруб

Конструкции разделяются на 2 большие группы:

Наддувающие.
Всасывающие.
Наддувающие модели оснащены мощным вентилятором, который располагается в нижней части корпуса (стакана) и создает идущий снизу воздушный поток. Скорость этого потока может регулироваться оператором и составляет в среднем 200 км/ч. Для безопасности пользователей вентилятор закрыт страховочной батутной сеткой, рабочую зону окружают надувными подушками. даже если участник вылетает за пределы воздушного потока, он мягко приземляется на страховочный инвентарь.

Всасывающие модификации аэротруб оснащаются винтовыми двигателями, которые располагаются в верхней части “стакана”. Втягивая воздух, оборудование создает воздушный поток, легко поднимающий человека вверх. Поскольку в таких установках для циркуляции воздуха создается закрытый контур, температура рабочего потока стабильна и не зависит от атмосферных условий.

Конструктивные особенности разных видов аэротруб

Различия между мобильными и стационарными аэротрубами

Устройства, используемые в качестве аттракционов, могут быть мобильными и стационарными. Стационарные установки монтируются к зданиях и чаще всего представляют собой комплексы с разными элементами развлекательной инфраструктуры. Мобильные представляют собой более простые и компактные установки, которые могут многократно разбираться, транспортироваться и собираться на новом месте.

Различия аэротруб этих двух типов заключаются в таких нюансах:

Зависимость от внешних условий. Как мы уже говорили, в стационарных установках используется воздух, циркулирующий в замкнутом контуре. Поэтому воздушный поток всегда имеет комнатную температуру и оптимальный процент влажности для того, чтобы участник полета чувствовал себя комфортно.
В мобильных установках воздух подается с улицы, поэтому в прохладное время года или дождливую погоду пользователи аттракциона могут испытывать дискомфорт при обдуве мощным воздушным потоком. От неприятных ощущений в какой-то мере защищает пошитый из непродуваемой ткани комбинезон, но разница между комнатной и уличной температурой все равно остается ощутимой.

Размеры “стакана”. Мобильные установки оснащены “стаканом”, высота которого составляет 5 метров, а ширина – от 2 метров. В таком сравнительно небольшом пространстве может полетать один человек или пара пользователь-инструктор. Стационарные аэротрубы имеют более внушительные размеры летного пространства, в котором одновременно могут находиться группы 8-10 человек.
Уровень шума. В установках мобильного типа используются преимущественно дизельные двигатели, которые и приводят в движение лопасти вентилятора. Эти агрегаты работают достаточно шумно и в сочетании с шумом воздушного потока образуют не всегда комфортный шумовой фон. Стационарные модификации чаще всего оснащаются электрическими моторами, которые работают практически бесшумно.

Независимо от конструктивных особенностей, аэротруба – это увлекательный аттракцион, позволяющий получить полную гамму ощущений при свободном полете. Наряду с психологической разгрузкой, выбросом адреналина в кровь и радостью от парения в воздухе, полеты в аэротрубе оказывают благотворное воздействие на физическое состояние человека.

Конструктивные особенности разных видов аэротруб

Необходимость балансировать в потоке воздуха и возможность управлять положением тела обеспечивают оптимальную нагрузку на мелкие мышцы-стабилизаторы. В обычной жизни они редко используются человеческим телом, а вот во время сеанса в аэротрубе активизируются в полной мере. Но так как полет длится не более 10 минут, мышцы не перегружаются и не доставляют дискомфорта, свойственного чрезмерным нагрузкам.

Конечно же, на посещения аэротрубы накладываются определенные ограничения. Они действуют для:

беременных;
детей до 4 лет;
гипертоников;
людей с массой тела свыше 120 кг.;
страдающих нарушениями вестибулярного аппарата;
лицам с психоневрологическими заболеваниями.
Для всех остальных полет в аэротрубе будет незабываемым и ярким приключением, от которого останутся только приятные воспоминания!

Узнать подробнее о полете в аэродинамической трубе можно на сайте www.aeropotok.site 

Аэродинамическая труба — это… Что такое Аэродинамическая труба?

Аэродинамическая труба СПбГУВК с открытой рабочей частью

Аэродинами́ческая труба́ — это экспериментальная установка, разработанная для изучения эффектов, проявляющихся при обтекании твёрдых тел (самолётов, автомобилей, ракет, мостов, зданий и др.) потоком, а также для экспериментального изучения аэродинамических явлений.

Аэродинамическая труба состоит из одного или нескольких вентиляторов (или других устройств нагнетания воздуха), которые нагнетают воздух в трубу, где находится модель исследуемого тела, тем самым создаётся эффект движения тела в воздухе с большой скоростью (принцип обращения движения).

Аэродинамические трубы классифицируют по диапазону возможных скоростей потока (дозвуковые, трансзвуковые, сверхзвуковые, гиперзвуковые), размеру и типу рабочей части (открытая, закрытая), а также поджатию — соотношению площадей поперечных сечений сопла трубы и форкамеры. Также существуют отдельные группы аэродинамических труб:

  • Высокотемпературные — дополнительно позволяют изучать влияние больших температур и связанных с ними явлений диссоциации и ионизации газов.
  • Высотные — для исследования обтекания моделей разреженным газом (имитация полёта на большой высоте).
  • Аэроакустические — для исследования влияния акустических полей на прочность конструкции, работу приборов и т. п.

Исследование характеристик надводных и подводных частей корпуса судов приходится выполнять с использованием дублированных моделей, что позволяет удовлетворить условию непротекания по поверхности раздела сред. В качестве альтернативы возможно использование специального экрана, имитирующего поверхность воды.

Центральный аэродинамический институт имеет 60 различных аэродинамических труб для скоростей от 10 м/с до M=25, некоторые из них (СМГДУ с магнитогидродинамическим разгоном до 8000 м/с, УСГД с давлением торможения 5000 атм) уникальны[1].

«Типовые» эксперименты

Импеллер (рабочее колесо) аэродинамической трубы СПбГУВК Дублированная модель надводной части судна в аэродинамической трубе СПбГУВК
  • Измерение давлений по поверхности тела.

Для исследования необходимо изготовить дренированную модель тела — в поверхности модели выполняются отверстия, которые соединяются шлангами с манометрами.

В гидромеханике доказано, что давление без изменений передается поперек пограничного слоя, что позволяет рассчитать сопротивление давления тела по результатам измерения давлений.

  • Измерение сил и моментов, действующих на тело

Для исследования необходимо подвесить модель на многокомпонентном динамометре (Аэродинамические весы) либо на системе растяжек, позволяющей измерять натяжение каждой растяжки. Пересчет сил и моментов, действующих на тело осуществляется в соответствии с критерием подобия Рейнольдса.

  • Визуализация течений

Для решения этой задачи используют шерстяные нити (шелковинки), наклеенные на поверхность модели либо закрепленные на проволочной сетке. Возможна постановка эксперимента с подачей цветного дыма в характерные зоны потока, но продолжительность такого эксперимента (в трубах с повторной циркуляцией воздуха), как правило, весьма мала вследствие общего задымления всего аэродинамического тракта.

История

Фрэнсис Герберт Уэнхем (Francis Herbert Wenham), член Совета Королевского авиационного общества Великобритании, создал первую закрытую аэродинамическую трубу в 1871 году.

Первую аэродинамическую трубу в России построил военный инженер В. А. Пашкевич в 1873 году, она использовалась исключительно для опытов в области баллистики.

В 1897 году К. Э. Циолковский построил прототип аэродинамической трубы собственной конструкции, использовав поток воздуха на выходе из центробежного вентилятора, и впервые в России применил этот агрегат для изучения эффектов, проявляющихся при обтекании твёрдых тел (самолётов, автомобилей, ракет воздушным потоком).

Под руководством Н. Е. Жуковского при механическом кабинете Московского университета в 1902 году была сооружена аэродинамическая труба, в которой осевым вентилятором создавался воздушный поток со скоростью до 9 м/с.

Первая аэродинамическая труба разомкнутой схемы была создана Т.Стантоном в Национальной физической лаборатории в Лондоне в 1903 году., вторая — Н. Е. Жуковским в Москве в 1906 году.

Первая замкнутая аэродинамическая труба построена в 1909 году в Гёттингене Людвигом Прандтлем, вторая — в 1910 году Т. Стантоном.

Первая аэродинамическая труба со свободной струей в рабочей части была построена Гюставом Эйфелем в Париже на Марсовом поле в 1909 году.

Дальнейшее развитие шло преимущественно по пути увеличения их размеров и повышения скорости потока в рабочей части (где помещается модель).

В 1934 году в районе Берлина построена Большая аэродинамическая труба (Адлерсхоф) для аэродинамического моделирования. В трубе диаметром от 8,5 до 12 м размещались части самолётов и изучалось воздействие на них горизонтальных воздушных потоков. Особенностью данной аэродинамической трубы является бетонное сооружение «Zeiss-Dywidag» с толщиной стенок всего 8 сантиметров. В настоящее время сохраняется как памятник промышленной архитектуры в составе Аэродинамического парка.

Впервые человек взлетел в вертикальной аэродинамической трубе в 1964 году на воздушной базе Райт-Патерсон, Огайо, США.

См. также

Примечания

Литература

  • Гофман А. Д. Движительно-рулевой комплекс и маневрирование судна. — Л.: Судостроение, 1988.
  • Справочник по теории корабля / Под ред. Я. И. Войткунского. В 3-х т. — Л.: Судостроение, 1987. — Т.1
  • Физическая энциклопедия / Редкол.: А. М. Прохоров (гл. ред.) и др. — М.: Советская энциклопедия, 1988, — Т.1 — С. 161—164 — 704 с., ил. — 100 000 экз.

Ссылки

Ландшафтная аэродинамическая труба Крыловского государственного научного центра

Рисунок 1. Продольный разрез ЛАТ Рисунок 2. Поперечный разрез ЛАТ

Ландшафтная аэродинамическая труба ФГУП «Крыловский государственный научный центр» — дозвуковая аэродинамическая труба замкнутого типа с закрытым рабочим участком большого размера. Служит для аэродинамических испытаний зданий, сооружений, стадионов, большепролётных мостов, ландшафтов, буровых платформ и других объектов в крупном масштабе. Установка входит в состав Комплекса аэродинамических труб ФГУП «Крыловский государственный научный центр»[1][2]. Расположена в г. Санкт-Петербург, Российская Федерация. В настоящее время Ландшафтная аэродинамическая труба — это единственная в России специализированная установка, позволяющая проводить исследования упругоподобных моделей большепролётных мостов, городских кварталов и ландшафтов в крупном масштабе (1 : 50÷75).

Назначение Ландшафтной Аэродинамической Трубы (ЛАТ)[править | править код]

Ландшафтная аэродинамическая труба используется для определения ветровых и снеговых нагрузок на различные уникальные сооружения, в том числе с учетом окружающей застройки и рельефа местности.

Последние несколько лет в крупных городах России ведется активное строительство объектов повышенной сложности: большепролетные мосты, небоскребы, уникальные спортивные объекты и другие. Для строительства подобных сооружений необходимо строго учитывать все факторы окружающей среды, которые будут воздействовать на сооружения во время их эксплуатации и на этапе строительства.

Одним из наиболее важных факторов является ветровая нагрузка, которая для зданий высотой более 200 метров соизмерима с нагрузками от 9-ти бального землетрясения. Ветровая нагрузка также выходит на передний план для мостов с пролетами более 100 метров, в таких случаях начинают проявляться эффекты аэродинамической неустойчивости, которые вызывают опасные колебания мостов[3]. Для получения достоверных результатов о ветровых нагрузках, во многих странах в руководящих документах по проектированию существуют требования о проведении аэродинамических испытаний моделей зданий и мостов в специализированных аэродинамических трубах, таких как Ландшафтная аэродинамическая труба.

История создания Ландшафтных аэродинамических труб[править | править код]

Рисунок 3. Моделируемый пограничный слой в ЛАТ

Первая полноценная Ландшафтная аэродинамическая труба (с закрытой рабочей частью длинной более 15 метров и шириной более 8 метров) была построена в пригороде г. Копенгаген в начале 1980-х годов. В это время в Дании шло проектирование моста Большой Бельт длинной 2800 метров, который и по сей день остается одним из лидеров по длине центрального пролета 1624 метра. Для корректного учёта аэродинамических нагрузок необходимо было изготовить модель моста в достаточно крупном масштабе с учётом окружающего ландшафта. Стало очевидным, что для подобного уникального проекта недостаточно «стандартных» аэродинамических труб с шириной рабочей части около 4 метров. Возникла необходимость строительства уникальной специализированной аэродинамической трубы ландшафтного типа. Таким образом, проектирование моста Большой Бельт дало толчок к созданию новой экспериментальной установки[4].

В начале двадцать первого века аэродинамическая труба ландшафтного типа была построена в Политехническом университете г. Милан. Главной причиной строительства был проект моста через Мессинский пролив, центральный пролет которого должен составить 3300 метров[5]. Ветровые нагрузки на мост такой длины превосходят нагрузки от 9-ти бального землетрясения, поэтому для их корректного учёта на базе Миланского политехнического университета была создана аэродинамическая труба ландшафтного типа в дополнение к уже имевшемуся комплексу из нескольких «традиционных» аэродинамических труб[6].

Благодаря возрастающему спросу на проектирование большепролетных мостов и сверхвысоких зданий в развитых странах юго-восточной Азии в конце 2000-х годов в Национальном университете Кореи также создали аэродинамическую трубу ландшафтного типа.

В России примерно с 2005 года стали реализовывать амбициозные проекты по строительству высотных зданий. В это время в стране существовало большое количество аэродинамических труб для нужд авиакосмической промышленности[7]. Эти трубы характерны замкнутым контуром, короткой открытой рабочей частью и, в силу отсутствия возможности моделирования пограничного слоя атмосферы, не могут использоваться для исследований архитектурных объектов. Для исследований большепролётных мостов, небоскрёбов, стадионов и других уникальных сооружений необходимо обеспечить достаточно крупный масштаб исследуемой модели и корректно моделировать пограничный слой атмосферы, что под силу осуществить лишь в специализированной Ландшафтной аэродинамической трубе с закрытой рабочей частью, имеющей значительную длину и ширину не менее 10 метров. До 2013 года из-за отсутствия специализированных аэродинамических труб в России, практически все уникальные мосты исследовались в иностранных научных центрах Дании, Франции и так далее.

Специалистами ФГУП «Крыловский государственный научный центр» совместно с АО «Гипростроймост — Санкт-Петербург» под руководством Соловьева Сергея Юрьевича были выполнены работы по проектированию и строительству первой в России специализированной установки — Ландшафтной аэродинамической трубы[8][9]. Установка построена в 2013 году и введена в эксплуатацию в ФГУП «Крыловский государственный научный центр» в г. Санкт-Петербург, Российская Федерация.

Исследования, проводимые в Ландшафтной Аэродинамической трубе[править | править код]

С момента открытия в Ландшафтной аэродинамической трубе проводятся исследования для нужд судостроения, мостостроения, а также высотного строительства. Именно в ней проведена серия аэродинамических испытаний арок Крымского моста, как на стадии эксплуатации, так и на всех этапах строительства моста, в том числе при выполнении операции по морской транспортировке арок к месту установки на фарватерные опоры[10][11][12].

Особенности экспериментального стенда[править | править код]

Корректное физическое моделирование аэродинамики ландшафтных объектов (большепролётные мосты, небоскрёбы, уникальные спортивные объекты и другие) накладывает ряд требований к масштабу и точности изготовления модели сооружения и окружающего ландшафта/застройки, а также к аэродинамической трубе, которая воспроизводит ветровой поток[3][13][14]. Этим требованиям удовлетворяет несколько специализированных аэродинамических труб в мире, в том числе, Ландшафтная аэродинамическая труба ФГУП «Крыловский государственный научный центр». Главными особенностями Ландшафтной аэродинамической трубы являются размеры её рабочей части и оснащение современным технологическим и измерительным оборудованием.

Длина рабочей части[править | править код]
Рисунок 5. Схема моделирования окружающей застройки

Длина рабочей части ЛАТ более 15 метров. Данный параметр обеспечивает возможность моделирования пограничного слоя атмосферы, учёт которого столь важен при проведении исследований ландшафтных объектов. Скорость ветра и его турбулентность сильно зависят от высоты над уровнем поверхности и при проведении исследований необходимо корректно моделировать эту зависимость[15]. Моделирование пограничного слоя атмосферы в Ландшафтной аэродинамической трубе происходит за счет естественного его нарастания, благодаря длине рабочей части и размещения дискретной шероховатости. Таким образом, имея достаточную длину рабочей части аэродинамической трубы, можно подобрать любой профиль скорости ветра, характерный для ветрового района в котором предполагается строительство сооружения.

Ширина рабочей части[править | править код]

Ширина рабочей части ЛАТ более 8 метров. Для учета влияния окружающих зданий на формирование потока ветра в городских условиях необходимо воспроизводить окружающую застройку в радиусе не менее 3H, где Н — высота исследуемого объекта[15]. Например, если высота исследуемого здания H = 200 м, то модель окружающей застройки должна включать здания, расположенные в радиусе 600 м. При моделировании в масштабе М 1 : 200 габарит такой модели окружающей застройки будет 6 м. Для исследования такой модели ширина рабочей части аэродинамической трубы должна быть не менее 8 метров, чтобы исключить влияние боковых стенок рабочей части.

Высота рабочей части[править | править код]

Высота рабочей части ЛАТ более 1,8 метра. Требование к высоте рабочей части связано с физическим ограничением на масштаб модели для аэродинамических исследований, в идеальном случае он должен быть в диапазоне М 1 : 100÷300 и не превышать 1 : 500 даже для сверхвысоких небоскребов. В противном случае может быть нарушен один из самых важных критериев физического моделирования — критерий Рейнольдса, что наряду с низкой детализацией модели приведет к недостоверным данным о нагрузках. Широко известен факт зависимости аэродинамических коэффициентов лобового сопротивления и подъемной силы от числа Рейнольдса[16].

Система климатического контроля[править | править код]

Аэродинамические трубы, предназначенные для исследования зданий и сооружений, имеют замкнутый контур и закрытую рабочую часть, таким образом, воздух внутри такой аэродинамической трубы изолирован от окружающего пространства. Для разгона потока внутри замкнутого контура аэродинамической трубы, как правило, используют вентиляторы с двигателями, расположенными в проточной части обратного канала[17], что приводит к постепенному нагреву воздушного потока при исследованиях. Изменение температуры воздушного потока на несколько градусов может послужить причиной недостоверных экспериментальных данных, особенно при применении упруго-подобных моделей (из-за расширения металлических элементов моделей). По этой причине экспериментальный стенд оснащен системой климатического контроля температуры воздуха в рабочей части, что позволяет поддерживать температуру набегающего потока постоянной в ходе эксперимента.

Поворот модели[править | править код]
Рисунок 6. Моделирование распределения снеговой нагрузки

В полу рабочей части ЛАТ расположен поворотный круг диаметром 10 метров, с возможностью поворота на любой угол с точностью поворота 0,1 градус. На нем размещаются исследуемые модели, за счет поворота модели относительно потока моделируются все возможные направления ветра.

Координатное устройство[править | править код]

В потолке установки расположено трех-координатное устройство для перемещения измерительных зондов и сканирования потока вокруг исследуемой модели. Область перемещения координатного устройства 10 х 10 х 2 метра, точность позиционирования 0,5 мм. Наличие координатного устройства значительно расширяет возможности экспериментальной установки. Например, при проведении исследований аэродинамики зданий одним из основных моментов является определение ветрового комфорта на уровне пешеходов. Для этого на модели проводят подробные измерения направления и скорости ветра в пешеходных зонах с помощью датчика скорости. Для его точного и быстрого позиционирования между зданий необходимо трех-координатное устройство. Также наличие данного устройства актуально для определения структуры потока над взлетно-посадочными площадками, расположенных на крышах зданий или на палубах судов.

Параметры экспериментального стенда[править | править код]

  • сечение рабочего участка — прямоугольник 11×2,3 м;
  • длина рабочего участка — 18 м;
  • скорость набегающего потока — до 14 м/с;
  • шаг регулировки скорости потока — 0,1 м/с;
  • поворотный круг с точностью угла поворота 0,1 градуса;
  • трех-координатное устройство, с точностью перемещения по осям Х, У, Z — 0,5 мм;
  • система климатического контроля параметров потока.
  1. ↑ Ландшафтная аэродинамическая труба (неопр.). krylov-center.ru. Дата обращения 21 декабря 2017.
  2. А. М. Белостоцкий, П. А. Акимов, И. Н. Афанасьева. Вычислительная аэродинамика в задачах строительства. — М.: АСВ, 2017. — С. 662—667. — 720 с. — ISBN 978-5-4323-0217-5.
  3. 1 2 С. Ю. Соловьев. Аэродинамическая устойчивость большепролетных мостов // «Траснпорт Российской Федерации». — 2016. — № 5. — С. 38—41.
  4. S.O. Hansen, E.G. Sørensen. A new boundary-layer wind tunnel at the Danish Maritime Institute // Journal of Wind Engineering and Industrial Aerodynamics. — Т. 18, вып. 2. — С. 213—224. — doi:10.1016/0167-6105(85)90099-6. Архивировано 17 января 2018 года.
  5. ↑ Italy revives Sicily bridge plan (англ.) (6 March 2009). Архивировано 24 июня 2017 года. Дата обращения 21 декабря 2017.
  6. ↑ Home — GVPM Polimi (англ.). GVPM Polimi. Дата обращения 21 декабря 2017. Архивировано 9 сентября 2016 года.
  7. ↑ ЦАГИ (рус.). www.tsagi.ru. Дата обращения 21 декабря 2017. Архивировано 1 октября 2017 года.
  8. Наумова К., Большакова Е. Импортозамещающее «продувание». Петербургский научный центр создаст проектировщикам условия для испытания своих объектов (неопр.). Коммерсантъ С-Петербург» №31, стр. 16 (20 февраля 2013). Дата обращения 17 января 2018.
  9. ↑ ВМФ задействует уникальные технологии при проектировании боевых кораблей (рус.), РИА Новости (20170602T0212+0300Z). Дата обращения 21 января 2018.
  10. krylovcenter. В Крыму начинается транспортировка железнодорожной арки моста, который свяжет полуостров с материком (неопр.) (6 сентября 2017). Дата обращения 21 декабря 2017. Архивировано 17 января 2018 года.
  11. krylovcenter. Крымский мост строят на века (неопр.) (22 мая 2017). Дата обращения 21 декабря 2017. Архивировано 17 января 2018 года.
  12. ↑ Ученые смоделировали транспортировку судоходных арок Крымского моста (рус.), Крымский мост. Дата обращения 21 января 2018.
  13. ↑ Строительные нормы и правила — СНИП.РФ (англ.). xn--h2ajhf.xn--p1ai. Дата обращения 21 декабря 2017. Архивировано 8 июля 2017 года.
  14. ↑ Eurocodes: Building the future — The European Commission website on the Eurocodes — (англ.). eurocodes.jrc.ec.europa.eu. Дата обращения 21 декабря 2017. Архивировано 9 сентября 2017 года.
  15. 1 2 Ю. А. Табунщиков. Энергоэффективные здания. — АВОК-Пресс, 2003. — 200 с.
  16. Лойцянский Л.Г. Механика жидкости и газа. — М.-Л.:Гостехиздат, 1950. — 678 с.
  17. ↑ Принцип работы аэродинамической трубы (неопр.). poznayka.org. Дата обращения 21 декабря 2017. Архивировано 13 июня 2017 года.
  • Holder R.C., Pankhurst D.W. Wind-Tunnel Technique. — Sir Isaac Pitman & Sons, 1952
  • Горлин С. М., Слезингер И. И. Аэромеханические измерения. Методы и приборы. — Наука, 1964. — 720 с.
  • Табунщиков Ю. А. Энергоэффективные здания. — АВОК-Пресс, 2003. — 200 с.
  • Соловьев С. Ю. Аэродинамическая устойчивость большепролетных мостов // «Транспорт Российской Федерации». — 2016. — № 5. — С. 38-41
  • СП 20.13330.2016 «СНиП 2.01.07-85* Нагрузки и воздействия»
  • EN 1991-1-4:2005

Comments

No comments yet. Why don’t you start the discussion?

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *